Vai al contenuto principale della pagina

Application of integrable systems to phase transitions / / C.B. Wang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang C. B Visualizza persona
Titolo: Application of integrable systems to phase transitions / / C.B. Wang Visualizza cluster
Pubblicazione: New York, : Springer, 2013
Edizione: 1st ed.
Descrizione fisica: 1 online resource (x, 219 pages) : illustrations
Disciplina: 530.474
Soggetto topico: Phase transformations (Statistical physics)
Statistical physics
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay’s Law.
Sommario/riassunto: The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory.
Titolo autorizzato: Application of integrable systems to phase transitions  Visualizza cluster
ISBN: 3-642-38565-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910437879603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui