1.

Record Nr.

UNINA990000700730403321

Autore

Minissi, Franco

Titolo

Il museo negli anni '80 / Franco Minissi

Pubbl/distr/stampa

Roma : Kappa, 1983

Descrizione fisica

151 p. : in gran parte ill. ; 24 cm

Collana

Linee evolutive : Collana di architettura

Disciplina

727.6

Locazione

FARBC

Collocazione

ARCH B 811

ARCH B 1287

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910437879603321

Autore

Wang C. B

Titolo

Application of integrable systems to phase transitions / / C.B. Wang

Pubbl/distr/stampa

New York, : Springer, 2013

ISBN

3-642-38565-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (x, 219 pages) : illustrations

Collana

Gale eBooks

Disciplina

530.474

Soggetti

Phase transformations (Statistical physics)

Statistical physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the



Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay’s Law.

Sommario/riassunto

The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory.