Vai al contenuto principale della pagina
| Autore: |
Stegmaier Johannes
|
| Titolo: |
New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty
|
| Pubblicazione: | KIT Scientific Publishing, 2017 |
| Descrizione fisica: | 1 online resource (XII, 243 p. p.) |
| Soggetto non controllato: | 3D Bildanalyse |
| Algorithmen | |
| Algorithms | |
| Data Mining | |
| Developmental Biology | |
| Entwicklungsbiologie | |
| Software | |
| Software3D Image Analysis | |
| Sommario/riassunto: | Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images. |
| Titolo autorizzato: | New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty ![]() |
| ISBN: | 1000060221 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910346767303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |