LEADER 01749nam 2200397z- 450 001 9910346767303321 005 20210211 010 $a1000060221 035 $a(CKB)4920000000100850 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54603 035 $a(oapen)doab54603 035 $a(EXLCZ)994920000000100850 100 $a20202102d2017 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNew Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty 210 $cKIT Scientific Publishing$d2017 215 $a1 online resource (XII, 243 p. p.) 311 08$a3-7315-0590-8 330 $aMultidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images. 610 $a3D Bildanalyse 610 $aAlgorithmen 610 $aAlgorithms 610 $aData Mining 610 $aDevelopmental Biology 610 $aEntwicklungsbiologie 610 $aSoftware 610 $aSoftware3D Image Analysis 700 $aStegmaier$b Johannes$4auth$01323753 906 $aBOOK 912 $a9910346767303321 996 $aNew Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty$93035813 997 $aUNINA