Vai al contenuto principale della pagina
Autore: | Prandi Dario |
Titolo: | A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition / / by Dario Prandi, Jean-Paul Gauthier |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Edizione: | 1st ed. 2018. |
Descrizione fisica: | 1 online resource (XIV, 113 p. 14 illus., 6 illus. in color.) |
Disciplina: | 515.785 |
Soggetto topico: | Harmonic analysis |
Computer science—Mathematics | |
Computer mathematics | |
Optical data processing | |
Abstract Harmonic Analysis | |
Mathematical Applications in Computer Science | |
Computer Imaging, Vision, Pattern Recognition and Graphics | |
Persona (resp. second.): | GauthierJean-Paul |
Nota di contenuto: | 1 Introduction -- 2 Preliminaries -- 3 Lifts -- 4 Almost-periodic interpolation and approximation -- 5 Pattern recognition -- 6 Image reconstruction -- 7 Applications -- 8 Appendix: A Circulant matrices -- 9 Appendix B: Bispectrally admissible sets. |
Sommario/riassunto: | This book proposes a semi-discrete version of the theory of Petitot and Citti-Sarti, leading to a left-invariant structure over the group SE(2,N), restricted to a finite number of rotations. This apparently very simple group is in fact quite atypical: it is maximally almost periodic, which leads to much simpler harmonic analysis compared to SE(2). Based upon this semi-discrete model, the authors improve on previous image-reconstruction algorithms and develop a pattern-recognition theory that also leads to very efficient algorithms in practice. |
Titolo autorizzato: | A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition |
ISBN: | 3-319-78482-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910300117103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |