Vai al contenuto principale della pagina

Multimodal Sentiment Analysis / / by Soujanya Poria, Amir Hussain, Erik Cambria



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Poria Soujanya Visualizza persona
Titolo: Multimodal Sentiment Analysis / / by Soujanya Poria, Amir Hussain, Erik Cambria Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (223 pages)
Disciplina: 006.3
Soggetto topico: Neurosciences
Multimedia systems
Optical data processing
Natural language processing (Computer science)
Translating and interpreting
Multimedia Information Systems
Image Processing and Computer Vision
Natural Language Processing (NLP)
Translation
Persona (resp. second.): HussainAmir
CambriaErik
Nota di contenuto: Preface -- Introduction and Motivation -- Background -- Literature Survey and Datasets -- Concept Extraction from Natural Text for Concept Level Text Analysis -- EmoSenticSpace: Dense concept-based affective features with common-sense knowledge -- Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns -- Combining Textual Clues with Audio-Visual Information for Multimodal Sentiment Analysis -- Conclusion and Future Work -- Index.
Sommario/riassunto: This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion. The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.
Titolo autorizzato: Multimodal Sentiment Analysis  Visualizza cluster
ISBN: 3-319-95020-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298407903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Socio-Affective Computing, . 2509-5706 ; ; 8