LEADER 04109nam 22006495 450 001 9910298407903321 005 20201108010201.0 010 $a3-319-95020-7 024 7 $a10.1007/978-3-319-95020-4 035 $a(CKB)4100000007110882 035 $a(MiAaPQ)EBC5568448 035 $a(DE-He213)978-3-319-95020-4 035 $a(PPN)231462913 035 $a(EXLCZ)994100000007110882 100 $a20181024d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultimodal Sentiment Analysis /$fby Soujanya Poria, Amir Hussain, Erik Cambria 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (223 pages) 225 1 $aSocio-Affective Computing,$x2509-5706 ;$v8 311 $a3-319-95018-5 327 $aPreface -- Introduction and Motivation -- Background -- Literature Survey and Datasets -- Concept Extraction from Natural Text for Concept Level Text Analysis -- EmoSenticSpace: Dense concept-based affective features with common-sense knowledge -- Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns -- Combining Textual Clues with Audio-Visual Information for Multimodal Sentiment Analysis -- Conclusion and Future Work -- Index. 330 $aThis latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion. The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis. 410 0$aSocio-Affective Computing,$x2509-5706 ;$v8 606 $aNeurosciences 606 $aMultimedia systems 606 $aOptical data processing 606 $aNatural language processing (Computer science) 606 $aTranslating and interpreting 606 $aNeurosciences$3https://scigraph.springernature.com/ontologies/product-market-codes/B18006 606 $aMultimedia Information Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/I18059 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aNatural Language Processing (NLP)$3https://scigraph.springernature.com/ontologies/product-market-codes/I21040 606 $aTranslation$3https://scigraph.springernature.com/ontologies/product-market-codes/N47000 615 0$aNeurosciences. 615 0$aMultimedia systems. 615 0$aOptical data processing. 615 0$aNatural language processing (Computer science) 615 0$aTranslating and interpreting. 615 14$aNeurosciences. 615 24$aMultimedia Information Systems. 615 24$aImage Processing and Computer Vision. 615 24$aNatural Language Processing (NLP). 615 24$aTranslation. 676 $a006.3 700 $aPoria$b Soujanya$4aut$4http://id.loc.gov/vocabulary/relators/aut$01064283 702 $aHussain$b Amir$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCambria$b Erik$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910298407903321 996 $aMultimodal Sentiment Analysis$92537283 997 $aUNINA