Vai al contenuto principale della pagina

Polynomials: Special Polynomials and Number-Theoretical Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Pintér Ákos Visualizza persona
Titolo: Polynomials: Special Polynomials and Number-Theoretical Applications Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (154 p.)
Soggetto topico: Mathematics & science
Research & information: general
Soggetto non controllato: (p, q)-cosine Bernoulli polynomials
(p, q)-numbers
(p, q)-sine Bernoulli polynomials
(p, q)-trigonometric functions
2D q-Appell polynomials
2D q-Bernoulli polynomials
2D q-Euler polynomials
2D q-Genocchi polynomials
Apostol type Bernoulli
Bernstein operators
Carlitz-type degenerate (p,q)-Euler numbers and polynomials
Carlitz-type higher-order degenerate (p,q)-Euler numbers and polynomials
degenerate Carlitz-type (p, q)-Euler numbers and polynomials
degenerate Euler numbers and polynomials
degenerate q-Euler numbers and polynomials
determinant expressions
Euler and Genocchi polynomials
Euler numbers and polynomials
Euler polynomials
Generating matrix functions
higher degree equations
Kansa method
Matrix recurrence relations
meshless
multiquadric
Operational representations
q-cosine Euler polynomials
q-exponential function
q-sine Euler polynomials
q-trigonometric function
radial basis function
radial polynomials
rate of approximation
recurrence relations
Shivley's matrix polynomials
summation formula
symmetric identities
the shape parameter
twice-iterated 2D q-Appell polynomials
Voronovskaja type asymptotic formula
Persona (resp. second.): PintérÁkos
Sommario/riassunto: Polynomials play a crucial role in many areas of mathematics including algebra, analysis, number theory, and probability theory. They also appear in physics, chemistry, and economics. Especially extensively studied are certain infinite families of polynomials. Here, we only mention some examples: Bernoulli, Euler, Gegenbauer, trigonometric, and orthogonal polynomials and their generalizations. There are several approaches to these classical mathematical objects. This Special Issue presents nine high quality research papers by leading researchers in this field. I hope the reading of this work will be useful for the new generation of mathematicians and for experienced researchers as well
Altri titoli varianti: Polynomials
Titolo autorizzato: Polynomials: Special Polynomials and Number-Theoretical Applications  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557601303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui