LEADER 03695nam 2200853z- 450 001 9910557601303321 005 20220111 035 $a(CKB)5400000000043664 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76516 035 $a(oapen)doab76516 035 $a(EXLCZ)995400000000043664 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPolynomials: Special Polynomials and Number-Theoretical Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (154 p.) 311 08$a3-0365-0818-X 311 08$a3-0365-0819-8 330 $aPolynomials play a crucial role in many areas of mathematics including algebra, analysis, number theory, and probability theory. They also appear in physics, chemistry, and economics. Especially extensively studied are certain infinite families of polynomials. Here, we only mention some examples: Bernoulli, Euler, Gegenbauer, trigonometric, and orthogonal polynomials and their generalizations. There are several approaches to these classical mathematical objects. This Special Issue presents nine high quality research papers by leading researchers in this field. I hope the reading of this work will be useful for the new generation of mathematicians and for experienced researchers as well 517 $aPolynomials 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $a(p, q)-cosine Bernoulli polynomials 610 $a(p, q)-numbers 610 $a(p, q)-sine Bernoulli polynomials 610 $a(p, q)-trigonometric functions 610 $a2D q-Appell polynomials 610 $a2D q-Bernoulli polynomials 610 $a2D q-Euler polynomials 610 $a2D q-Genocchi polynomials 610 $aApostol type Bernoulli 610 $aBernstein operators 610 $aCarlitz-type degenerate (p,q)-Euler numbers and polynomials 610 $aCarlitz-type higher-order degenerate (p,q)-Euler numbers and polynomials 610 $adegenerate Carlitz-type (p, q)-Euler numbers and polynomials 610 $adegenerate Euler numbers and polynomials 610 $adegenerate q-Euler numbers and polynomials 610 $adeterminant expressions 610 $aEuler and Genocchi polynomials 610 $aEuler numbers and polynomials 610 $aEuler polynomials 610 $aGenerating matrix functions 610 $ahigher degree equations 610 $aKansa method 610 $aMatrix recurrence relations 610 $ameshless 610 $amultiquadric 610 $aOperational representations 610 $aq-cosine Euler polynomials 610 $aq-exponential function 610 $aq-sine Euler polynomials 610 $aq-trigonometric function 610 $aradial basis function 610 $aradial polynomials 610 $arate of approximation 610 $arecurrence relations 610 $aShivley's matrix polynomials 610 $asummation formula 610 $asymmetric identities 610 $athe shape parameter 610 $atwice-iterated 2D q-Appell polynomials 610 $aVoronovskaja type asymptotic formula 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aPintér$b Ákos$4edt$01295545 702 $aPintér$b Ákos$4oth 906 $aBOOK 912 $a9910557601303321 996 $aPolynomials: Special Polynomials and Number-Theoretical Applications$93023603 997 $aUNINA