Vai al contenuto principale della pagina

Virtual and remote control tower : research, design, development, validation, and implementation / / editor: Norbert Fürstenau ; co-edited by Anne Papenfuss and Jörn Jakobi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Virtual and remote control tower : research, design, development, validation, and implementation / / editor: Norbert Fürstenau ; co-edited by Anne Papenfuss and Jörn Jakobi Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Edizione: 2nd ed.
Descrizione fisica: 1 online resource (627 pages)
Disciplina: 629.1366
Soggetto topico: Air traffic control
Air traffic control - Electronic equipment
Airport control towers
Persona (resp. second.): FürstenauNorbert
JakobiJörn
PapenfussAnne
Nota di contenuto: Intro -- Foreword: On the Origins of the Virtual Tower -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Editor and Co-Editors -- Abbreviations -- Preconditions -- Introduction: Basics, History, and Overview -- 1 Some Basics -- 2 History of Virtual and Remote Tower Research and Development (2001-2014) -- 2.1 Previous Work, Vision and Initial Steps -- 2.2 Basic Research (2002-2005) -- 2.3 Proof-Of-Concept Project (2005-2008) -- 2.4 From Prototype Development to Technology Transfer (2008-2014) -- 3 Towards MRTO Standardization and Implementation (2010-2021) -- 4 Chapter Overview -- References -- Visual Features Used by Airport Tower Controllers: Some Implications for the Design of Remote or Virtual Towers -- 1 Introduction -- 2 Visual Information Used in the Airport Tower -- 3 Visual Features at SFO -- 4 Deceleration During Landing at SFO -- 5 Summary -- References -- Detection and Recognition for Remote Tower Operations -- 1 Introduction -- 2 Tower Control -- 2.1 Basic Duties -- 2.2 Airport Radar and Surveillance Systems -- 3 Analysis of Visual Features -- 3.1 Analysis of Tower Tasks and Visual Needs -- 3.2 List of Visual Features -- 4 Method and Results -- 5 Discussion and Effect on Image Resolution -- References -- Remote Tower Research in the United States -- 1 Background -- 2 Present Use of the Out-the-Window (OTW) View -- 2.1 SNT Walkthrough (FAA/George Mason University, Fairfax, VA, 2009) -- 2.2 Verbal Protocol Analysis (Boehm-Davis, 2010) -- 3 The Operational Concept for SNT (FAA, 2008b) -- 3.1 Assumptions Related to the SNT Concept -- 3.2 Substituting for the Window View -- 3.3 2-D Surveillance Display for the Controllers -- 3.4 Decision Support Tools -- 3.5 Use of Aircraft Derived Data (ADD) -- 3.6 SNT Configurations -- 4 Summary of the SNT Concept -- 5 Assessment of the SNT Concept.
5.1 Off-Nominal Events in SNT Operations (Nene, 2009) -- 5.2 SNT Safety Impact Assessment (Cheng, 2010 -- Colavito & -- Nene, 2010) -- 5.3 Use of Digital Camera for Surface Surveillance (FAA, 2011a -- Grappel, 2009) -- 6 Some Observations Related to the SNT Concept -- 7 Change in Focus of the FAA's Remote Tower Research -- 7.1 Current Operations at Non-towered Airports (NTAs) -- 7.2 Present Shortfalls in NTA Operations (Colavito, 2013) -- 7.3 Concept for Remotely Providing Selected NTA Services -- 8 Present Effort on the Colorado Initiative -- 9 Remote Tower Demonstration Project at the Leesburg Executive Airport (KJYO), Leesburg, Virginia -- 10 Future of Remote Towers in the U.S. -- References -- Remotely-Operated AFIS in Japan -- 1 The AFIS Situation in Japan -- 2 Remote AFIS in Japan -- 3 System Displays and Their Functions -- 3.1 APDU (Aircraft Positioning Display Unit) -- 3.2 ITV -- 3.3 FACE (Flight object Administration CEntre system) -- 3.4 TDU (Terminal Display Unit) -- 3.5 MPID (Multi-Purpose Information Display) -- 4 Remote AFIS Operational Challenges -- 4.1 Effect of ITV System -- 4.2 Multiple Operation and Issues in Remote AFIS (Double Contact) -- 5 Summary -- References -- Development and Field Testing of Remote Tower Prototype -- Remote Tower Experimental System with Augmented Vision Videopanorama -- 1 Introduction -- 2 Work Analysis -- 3 Experimental Remote Tower System -- 3.1 Optical Design and Expected Performance -- 3.2 Digital Reconstruction of the Out-of-Windows View -- 3.3 Videopanorama Interaction and Control Display -- 3.4 Augmented Tower Vision and Movement Detection -- 3.5 Triangulation -- 4 Field Testing for Verification of System Performance -- 4.1 Latency -- 4.2 Optical Resolution: Static Measurements -- 4.3 Performance Verification: Flight Tests -- 5 Simulation Environment -- 6 Conclusion and Outlook -- References.
Remote Tower Prototype System and Automation Perspectives -- 1 Introduction -- 2 Work and Task Analysis for Requirements Specifications and Prototype Design -- 3 The RTO-System Setup and Human-System Interface -- 3.1 Video-Panorama Camera System -- 3.2 RTO-Controller Working Position -- 3.3 High-Bandwidth Wide-Area Network -- 3.4 RTO Software and Human-Machine Interaction -- 4 Perspectives of Automatic Movement and Object Detection -- 4.1 Movement Detection via Optical Flow Analysis -- 4.2 Region Tracking Algorithm Based on Background Estimation -- 4.3 Object Classification -- 4.4 Thermal Imaging -- 5 Functional Tests and Verification -- 5.1 Measuring Camera-Display Latency -- 5.2 Electromagnetic Compatibility -- 5.3 Image Optimization -- 6 Conclusion -- References -- Integration of (Surveillance) Multilateration Sensor Data into a Remote Tower System -- 1 ENRI's Remote Tower Research Project -- 2 System Functions and Components -- 2.1 System Overview -- 2.2 The Out of the Window (OTW) View System -- 2.3 The OCTPASS Surveillance Sensor -- 3 Object Following Techniques -- 3.1 Video-Based Object Detection and Following -- 3.2 Automatic Object Recognition -- 4 MLAT Integration -- 4.1 Target Tracking on OTW (Video + MLAT) -- 4.2 Example of a Phenomenon Caused by MLAT Issues -- 4.3 PTZ Camera Automatic Tracking (Video + Monitoring Sensor) -- 4.4 Integrating Panoramic Image, PTZ and Surveillance Information -- 5 Summary -- References -- Which Metrics Provide the Insight Needed? A Selection of Remote Tower Evaluation Metrics to Support a Remote Tower Operation Concept Validation -- 1 Introduction -- 2 Extended Field Trial Infrastructure -- 3 Remote Tower Metrics -- 4 Method -- 4.1 Participants -- 4.2 Apparatus -- 4.3 Design -- 4.4 Procedure -- 5 Results -- 5.1 Basic Analysis of Safety Related Metrics -- 5.2 Evaluation for the RTMs.
6 Discussion and Conclusion -- 6.1 Basic Analysis of Safety Related Metrics -- 6.2 Evaluation for the RTMs -- 7 Outlook -- References -- Model Based Analysis of Two-Alternative Decision Errors in a Videopanorama-Based Remote Tower Work Position -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Experimental Environment and Conditions -- 2.3 Experimental Design and Task -- 3 Results -- 4 Data Analysis and Discussion -- 4.1 Technical Limitations -- 4.2 Bayes Inference: Risk of Unexpected World State -- 4.3 Discriminability d′ of Aircraft Maneuvers -- 4.4 Nonparametric Discriminability A -- 4.5 Error Prediction Using the Information Processing/Time Pressure Hypothesis -- 5 Conclusion -- References -- Human-in-the-Loop Simulation for RTO Workload and Design -- Multiple Remote Tower Simulation Environment -- 1 Motivation -- 2 Method: Design of a Comprehensive RTO Validation Platform -- 2.1 E-OCVM Guideline -- 2.2 FTS-HITL-Coupling -- 2.3 HITL-Adoption -- 2.4 HITL-Field-Transfer -- 2.5 Specification -- 3 Implementation of the RTO Validation Platform -- 4 Results of the MRT Simulation Platform Application -- 4.1 Case Study: Application of FTS-HITL-Coupling -- 4.2 Case Study: Remote Tower Human Factors Study -- 4.3 Case Study: Remote Tower Center (RTC) Study -- 4.4 Case Study: Multi Remote Tower Study -- 4.5 Case Study: SESAR2020 Shadow Mode Trials -- 5 Conclusion and Outlook -- References -- Assessing Operational Validity of Remote Tower Control in High-Fidelity Simulation -- 1 Introduction -- 1.1 Motivation -- 1.2 Related Work -- 1.3 Aerodrome Control Work Environment -- 1.4 Characteristics of Regional Airports and Consequences for Air Traffic Control -- 1.5 Controller Assistance via Information Super-Imposition and Automatic Zoom Camera Tracking -- 1.6 Research Questions -- 2 Method -- 2.1 Subjects -- 2.2 Experimental Design.
2.3 Simulation Setting -- 2.4 Experimental Task -- 2.5 Experimental Conditions -- 2.6 Controllers Working Positions -- 3 Dependent Variables and Data Analysis -- 3.1 Feasibility, Acceptance and Usability of the Workplace -- 3.2 Assessing the Relevance of the Far View -- 3.3 Benefit of the Assistance Tools and Analysis of the Eye-Tracking Data -- 4 Results -- 4.1 Feasibility, Acceptance and Usability of the Concept -- 4.2 Relevance of Far View -- 4.3 Benefit of Assistance Tools -- 5 Discussion -- 5.1 Feasibility, Acceptance and Usability of the Concept -- 5.2 Relevance of the Far View and the Visual Information -- 5.3 Benefit of Assistance Tools -- 6 Conclusion -- References -- Model Based Analysis of Subjective Mental Workload During Multiple Remote Tower Human-In-The-Loop Simulations -- 1 Introduction -- 2 Mental Workload and Workload Measures -- 2.1 Definition of Mental Workload -- 2.2 Operational Approaches and Models to Predict Mental Workload in ATC Based on Task Load -- 3 Experiment and Data Collection -- 3.1 Sample and Procedure -- 3.2 Simulation Setup -- 3.3 Experimental Design and Workload Assessment -- 4 Nonlinear Work- and Task Load Model -- 4.1 Logistic Mental Workload Model ISA(n) -- 4.2 Logistic Model for Rate of Radio Calls RC(N) -- 4.3 Power Law Model ISA(RC) -- 5 Experimental Results -- 5.1 ANOVA Data Analysis: General Linear Model and Multivariate Regression -- 5.2 Logistic Model Based Regression Analysis of ISA(n) Workload and RC(n) Taskload Means -- 5.3 Psychophysics Power Law Model for ISA(RC) Regression Analysis -- 6 Discussion -- 6.1 H1: Dependence of Subjective WL on Traffic Load and Impact of MRTO -- 6.2 H2: Dependence of Objective Communication TL on Traffic Load and Impact of MRTO -- 6.3 H3: Positive Correlation Between WL and Communication TL Variables RD, RC.
6.4 H4: Mediator Effect and Sufficiency of Communication Load for Explaining Workload.
Titolo autorizzato: Virtual and Remote Control Tower  Visualizza cluster
ISBN: 9783030936501
9783030936495
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910735398303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Research topics in aerospace. .