11365nam 2200565 450 991073539830332120221228080246.09783030936501(electronic bk.)9783030936495(MiAaPQ)EBC7027174(Au-PeEL)EBL7027174(CKB)24106350700041(PPN)263899144(EXLCZ)992410635070004120221228d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierVirtual and remote control tower research, design, development, validation, and implementation /editor: Norbert Fürstenau ; co-edited by Anne Papenfuss and Jörn Jakobi2nd ed.Cham, Switzerland :Springer,[2022]©20221 online resource (627 pages)Research topics in aerospacePrint version: Fürstenau, Norbert Virtual and Remote Control Tower Cham : Springer International Publishing AG,c2022 9783030936495 Intro -- Foreword: On the Origins of the Virtual Tower -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Editor and Co-Editors -- Abbreviations -- Preconditions -- Introduction: Basics, History, and Overview -- 1 Some Basics -- 2 History of Virtual and Remote Tower Research and Development (2001-2014) -- 2.1 Previous Work, Vision and Initial Steps -- 2.2 Basic Research (2002-2005) -- 2.3 Proof-Of-Concept Project (2005-2008) -- 2.4 From Prototype Development to Technology Transfer (2008-2014) -- 3 Towards MRTO Standardization and Implementation (2010-2021) -- 4 Chapter Overview -- References -- Visual Features Used by Airport Tower Controllers: Some Implications for the Design of Remote or Virtual Towers -- 1 Introduction -- 2 Visual Information Used in the Airport Tower -- 3 Visual Features at SFO -- 4 Deceleration During Landing at SFO -- 5 Summary -- References -- Detection and Recognition for Remote Tower Operations -- 1 Introduction -- 2 Tower Control -- 2.1 Basic Duties -- 2.2 Airport Radar and Surveillance Systems -- 3 Analysis of Visual Features -- 3.1 Analysis of Tower Tasks and Visual Needs -- 3.2 List of Visual Features -- 4 Method and Results -- 5 Discussion and Effect on Image Resolution -- References -- Remote Tower Research in the United States -- 1 Background -- 2 Present Use of the Out-the-Window (OTW) View -- 2.1 SNT Walkthrough (FAA/George Mason University, Fairfax, VA, 2009) -- 2.2 Verbal Protocol Analysis (Boehm-Davis, 2010) -- 3 The Operational Concept for SNT (FAA, 2008b) -- 3.1 Assumptions Related to the SNT Concept -- 3.2 Substituting for the Window View -- 3.3 2-D Surveillance Display for the Controllers -- 3.4 Decision Support Tools -- 3.5 Use of Aircraft Derived Data (ADD) -- 3.6 SNT Configurations -- 4 Summary of the SNT Concept -- 5 Assessment of the SNT Concept.5.1 Off-Nominal Events in SNT Operations (Nene, 2009) -- 5.2 SNT Safety Impact Assessment (Cheng, 2010 -- Colavito &amp -- Nene, 2010) -- 5.3 Use of Digital Camera for Surface Surveillance (FAA, 2011a -- Grappel, 2009) -- 6 Some Observations Related to the SNT Concept -- 7 Change in Focus of the FAA's Remote Tower Research -- 7.1 Current Operations at Non-towered Airports (NTAs) -- 7.2 Present Shortfalls in NTA Operations (Colavito, 2013) -- 7.3 Concept for Remotely Providing Selected NTA Services -- 8 Present Effort on the Colorado Initiative -- 9 Remote Tower Demonstration Project at the Leesburg Executive Airport (KJYO), Leesburg, Virginia -- 10 Future of Remote Towers in the U.S. -- References -- Remotely-Operated AFIS in Japan -- 1 The AFIS Situation in Japan -- 2 Remote AFIS in Japan -- 3 System Displays and Their Functions -- 3.1 APDU (Aircraft Positioning Display Unit) -- 3.2 ITV -- 3.3 FACE (Flight object Administration CEntre system) -- 3.4 TDU (Terminal Display Unit) -- 3.5 MPID (Multi-Purpose Information Display) -- 4 Remote AFIS Operational Challenges -- 4.1 Effect of ITV System -- 4.2 Multiple Operation and Issues in Remote AFIS (Double Contact) -- 5 Summary -- References -- Development and Field Testing of Remote Tower Prototype -- Remote Tower Experimental System with Augmented Vision Videopanorama -- 1 Introduction -- 2 Work Analysis -- 3 Experimental Remote Tower System -- 3.1 Optical Design and Expected Performance -- 3.2 Digital Reconstruction of the Out-of-Windows View -- 3.3 Videopanorama Interaction and Control Display -- 3.4 Augmented Tower Vision and Movement Detection -- 3.5 Triangulation -- 4 Field Testing for Verification of System Performance -- 4.1 Latency -- 4.2 Optical Resolution: Static Measurements -- 4.3 Performance Verification: Flight Tests -- 5 Simulation Environment -- 6 Conclusion and Outlook -- References.Remote Tower Prototype System and Automation Perspectives -- 1 Introduction -- 2 Work and Task Analysis for Requirements Specifications and Prototype Design -- 3 The RTO-System Setup and Human-System Interface -- 3.1 Video-Panorama Camera System -- 3.2 RTO-Controller Working Position -- 3.3 High-Bandwidth Wide-Area Network -- 3.4 RTO Software and Human-Machine Interaction -- 4 Perspectives of Automatic Movement and Object Detection -- 4.1 Movement Detection via Optical Flow Analysis -- 4.2 Region Tracking Algorithm Based on Background Estimation -- 4.3 Object Classification -- 4.4 Thermal Imaging -- 5 Functional Tests and Verification -- 5.1 Measuring Camera-Display Latency -- 5.2 Electromagnetic Compatibility -- 5.3 Image Optimization -- 6 Conclusion -- References -- Integration of (Surveillance) Multilateration Sensor Data into a Remote Tower System -- 1 ENRI's Remote Tower Research Project -- 2 System Functions and Components -- 2.1 System Overview -- 2.2 The Out of the Window (OTW) View System -- 2.3 The OCTPASS Surveillance Sensor -- 3 Object Following Techniques -- 3.1 Video-Based Object Detection and Following -- 3.2 Automatic Object Recognition -- 4 MLAT Integration -- 4.1 Target Tracking on OTW (Video + MLAT) -- 4.2 Example of a Phenomenon Caused by MLAT Issues -- 4.3 PTZ Camera Automatic Tracking (Video + Monitoring Sensor) -- 4.4 Integrating Panoramic Image, PTZ and Surveillance Information -- 5 Summary -- References -- Which Metrics Provide the Insight Needed? A Selection of Remote Tower Evaluation Metrics to Support a Remote Tower Operation Concept Validation -- 1 Introduction -- 2 Extended Field Trial Infrastructure -- 3 Remote Tower Metrics -- 4 Method -- 4.1 Participants -- 4.2 Apparatus -- 4.3 Design -- 4.4 Procedure -- 5 Results -- 5.1 Basic Analysis of Safety Related Metrics -- 5.2 Evaluation for the RTMs.6 Discussion and Conclusion -- 6.1 Basic Analysis of Safety Related Metrics -- 6.2 Evaluation for the RTMs -- 7 Outlook -- References -- Model Based Analysis of Two-Alternative Decision Errors in a Videopanorama-Based Remote Tower Work Position -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Experimental Environment and Conditions -- 2.3 Experimental Design and Task -- 3 Results -- 4 Data Analysis and Discussion -- 4.1 Technical Limitations -- 4.2 Bayes Inference: Risk of Unexpected World State -- 4.3 Discriminability d′ of Aircraft Maneuvers -- 4.4 Nonparametric Discriminability A -- 4.5 Error Prediction Using the Information Processing/Time Pressure Hypothesis -- 5 Conclusion -- References -- Human-in-the-Loop Simulation for RTO Workload and Design -- Multiple Remote Tower Simulation Environment -- 1 Motivation -- 2 Method: Design of a Comprehensive RTO Validation Platform -- 2.1 E-OCVM Guideline -- 2.2 FTS-HITL-Coupling -- 2.3 HITL-Adoption -- 2.4 HITL-Field-Transfer -- 2.5 Specification -- 3 Implementation of the RTO Validation Platform -- 4 Results of the MRT Simulation Platform Application -- 4.1 Case Study: Application of FTS-HITL-Coupling -- 4.2 Case Study: Remote Tower Human Factors Study -- 4.3 Case Study: Remote Tower Center (RTC) Study -- 4.4 Case Study: Multi Remote Tower Study -- 4.5 Case Study: SESAR2020 Shadow Mode Trials -- 5 Conclusion and Outlook -- References -- Assessing Operational Validity of Remote Tower Control in High-Fidelity Simulation -- 1 Introduction -- 1.1 Motivation -- 1.2 Related Work -- 1.3 Aerodrome Control Work Environment -- 1.4 Characteristics of Regional Airports and Consequences for Air Traffic Control -- 1.5 Controller Assistance via Information Super-Imposition and Automatic Zoom Camera Tracking -- 1.6 Research Questions -- 2 Method -- 2.1 Subjects -- 2.2 Experimental Design.2.3 Simulation Setting -- 2.4 Experimental Task -- 2.5 Experimental Conditions -- 2.6 Controllers Working Positions -- 3 Dependent Variables and Data Analysis -- 3.1 Feasibility, Acceptance and Usability of the Workplace -- 3.2 Assessing the Relevance of the Far View -- 3.3 Benefit of the Assistance Tools and Analysis of the Eye-Tracking Data -- 4 Results -- 4.1 Feasibility, Acceptance and Usability of the Concept -- 4.2 Relevance of Far View -- 4.3 Benefit of Assistance Tools -- 5 Discussion -- 5.1 Feasibility, Acceptance and Usability of the Concept -- 5.2 Relevance of the Far View and the Visual Information -- 5.3 Benefit of Assistance Tools -- 6 Conclusion -- References -- Model Based Analysis of Subjective Mental Workload During Multiple Remote Tower Human-In-The-Loop Simulations -- 1 Introduction -- 2 Mental Workload and Workload Measures -- 2.1 Definition of Mental Workload -- 2.2 Operational Approaches and Models to Predict Mental Workload in ATC Based on Task Load -- 3 Experiment and Data Collection -- 3.1 Sample and Procedure -- 3.2 Simulation Setup -- 3.3 Experimental Design and Workload Assessment -- 4 Nonlinear Work- and Task Load Model -- 4.1 Logistic Mental Workload Model ISA(n) -- 4.2 Logistic Model for Rate of Radio Calls RC(N) -- 4.3 Power Law Model ISA(RC) -- 5 Experimental Results -- 5.1 ANOVA Data Analysis: General Linear Model and Multivariate Regression -- 5.2 Logistic Model Based Regression Analysis of ISA(n) Workload and RC(n) Taskload Means -- 5.3 Psychophysics Power Law Model for ISA(RC) Regression Analysis -- 6 Discussion -- 6.1 H1: Dependence of Subjective WL on Traffic Load and Impact of MRTO -- 6.2 H2: Dependence of Objective Communication TL on Traffic Load and Impact of MRTO -- 6.3 H3: Positive Correlation Between WL and Communication TL Variables RD, RC.6.4 H4: Mediator Effect and Sufficiency of Communication Load for Explaining Workload.Research topics in aerospace. .Air traffic control. Air traffic controlElectronic equipmentAirport control towers Air traffic control. .Air traffic controlElectronic equipment.Airport control towers .629.1366Fürstenau NorbertJakobi JörnPapenfuss AnneMiAaPQMiAaPQMiAaPQ9910735398303321Virtual and Remote Control Tower2897234UNINA