Vai al contenuto principale della pagina

Singular traces . Volume 1, : Theory / / Steven Lord, Fedor Sukochev, Dmitriy Zanin



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lord Steven Visualizza persona
Titolo: Singular traces . Volume 1, : Theory / / Steven Lord, Fedor Sukochev, Dmitriy Zanin Visualizza cluster
Pubblicazione: Berlin ; ; Boston, MA : , : Walter de Gruyter GmbH, , [2021]
©2021
Edizione: 2nd corr. and exten. edition
Descrizione fisica: 1 online resource (XXX, 386 p.)
Disciplina: 515.732
Soggetto topico: Operator spaces
Symmetric functions
Persona (resp. second.): SukochevF. A.
ZaninDmitriy
Nota di contenuto: Frontmatter -- Preface -- Notations -- Contents -- Introduction -- Part I: Preliminary material -- 1 What is a singular trace? -- 2 Singular values and submajorization -- Part II: Theory of traces on ideals of ℒ ( H) -- Introduction -- 3 Calkin correspondence for norms and traces -- 4 Pietsch correspondence -- 5 Spectrality of traces -- Part III: Formulas for traces on ℒ1,∞ -- Introduction -- 6 Dixmier traces and positive traces -- 7 Diagonal formulas for traces -- 8 Heat trace and ζ-function formulas -- 9 Criteria for measurability -- A Miscellaneous results -- Bibliography -- Index
Sommario/riassunto: This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.
Titolo autorizzato: Singular Traces  Visualizza cluster
ISBN: 3-11-037805-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910554230903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: De Gruyter Studies in Mathematics