|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910554230903321 |
|
|
Autore |
Lord Steven |
|
|
Titolo |
Singular traces . Volume 1, : Theory / / Steven Lord, Fedor Sukochev, Dmitriy Zanin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Boston, MA : , : Walter de Gruyter GmbH, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[2nd corr. and exten. edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XXX, 386 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter Studies in Mathematics ; ; 46/1 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Operator spaces |
Symmetric functions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Preface -- Notations -- Contents -- Introduction -- Part I: Preliminary material -- 1 What is a singular trace? -- 2 Singular values and submajorization -- Part II: Theory of traces on ideals of ℒ ( H) -- Introduction -- 3 Calkin correspondence for norms and traces -- 4 Pietsch correspondence -- 5 Spectrality of traces -- Part III: Formulas for traces on ℒ1,∞ -- Introduction -- 6 Dixmier traces and positive traces -- 7 Diagonal formulas for traces -- 8 Heat trace and ζ-function formulas -- 9 Criteria for measurability -- A Miscellaneous results -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions. |
|
|
|
|
|
|
|