Vai al contenuto principale della pagina

Exploring Chemical Concepts Through Theory and Computation



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Liu Shubin Visualizza persona
Titolo: Exploring Chemical Concepts Through Theory and Computation Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (594 pages)
Disciplina: 542.8
Soggetto topico: Computational chemistry
Quantum chemistry
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- 10 Questions About Exploring Chemical Concepts Through Theory and Computation -- Chapter 1 Chemical Concepts from Molecular Orbital Theory -- 1.1 Introduction -- 1.2 Molecular Orbital Theory -- 1.3 Canonical Molecular Orbitals -- 1.4 Frontier Molecular Orbital Theory -- 1.5 Localized Molecular Orbitals -- 1.5.1 Orthogonal Localized Molecular Orbitals -- 1.6 Regularized Nonorthogonal Localized Molecular Orbitals -- 1.7 Molecular Orbitalets -- Acknowledgment -- References -- Chapter 2 Chemical Concepts from Ab Initio Valence Bond Theory -- 2.1 Introduction -- 2.2 Ab Initio Valence Bond Theory -- 2.2.1 Valence Bond Self‐Consistent Field Method -- 2.2.2 Rumer Structures -- 2.2.3 Orbitals in VB Wave Function -- 2.2.4 VB Methods Involving Dynamic Correlation -- 2.3 Chemical Concepts in VB Theory -- 2.3.1 Resonance Theory -- 2.3.2 Conjugation, Hyperconjugation, and Aromaticity -- 2.3.3 Electron‐Pair Bonding in Valence Bond Theory -- 2.3.4 Diabatic States in Valence Bond Theory -- 2.4 A Brief Guide to Perform VB Calculations -- 2.4.1 Preparing XMVB Input Files -- 2.4.2 Reading XMVB Output Files -- 2.5 Concluding Remarks -- References -- Chapter 3 Chemical Concepts from Conceptual Density Functional Theory -- 3.1 Introduction -- 3.2 The Fundamentals: Density Functional Theory (DFT) and Kohn-Sham DFT -- 3.3 The First Derivatives: The Electronic Chemical Potential and the Electron Density -- 3.4 The Second Derivatives: Chemical Hardness, Fukui Function, Linear Response Function, and Related Quantities -- 3.4.1 Chemical Hardness and Softness -- 3.4.2 The Fukui Function and the Dual Descriptor -- 3.4.3 Local Softness and Hardness -- 3.4.4 The Linear Response Function, Softness and Hardness Kernels -- 3.5 Perturbational Perspective of Chemical Reactivity -- 3.6 Conclusions -- Acknowledgment.
References -- Chapter 4 Chemical Concepts from Density‐Based Approaches in Density Functional Theory -- 4.1 Introduction -- 4.2 Four Density‐Based Frameworks -- 4.2.1 Orbital‐Free DFT (OF‐DFT) -- 4.2.2 Conceptual DFT (CDFT) -- 4.2.3 Density‐Associated Quantities (DAQs) -- 4.2.4 Information‐Theoretic Approach (ITA) -- 4.3 Applications of Density‐Based Approaches -- 4.3.1 Molecular Isomeric and Conformational Stability -- 4.3.2 Bonding and Noncovalent Interactions -- 4.3.3 Cooperation and Frustration -- 4.3.4 Homochirality and Principle of Chirality Hierarchy -- 4.3.5 Electrophilicity and Nucleophilicity -- 4.3.6 Regioselectivity and Stereoselectivity -- 4.3.7 Brønsted-Lowry Acidity and Basicity -- 4.3.8 Aromaticity and Antiaromaticity -- 4.3.9 Molecular Properties (Frontier Orbitals, HOMO/LUMO Gap, Oxidation States, Polarizability) -- 4.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 5 Chemical Bonding -- 5.1 Introduction -- 5.2 The Physical Mechanism of the Chemical Bond -- 5.3 Bonding Models -- 5.4 Bond Length and Bond Strength -- 5.5 Dative and Electron‐Sharing Bonds -- 5.6 Polar Bonds -- 5.7 Atomic Partial Charges and Atomic Electronegativity -- 5.8 Chemical Bonding in Main‐Group Compounds: N2, CO, BF, LiF -- 5.9 Chemical Bonding of the Heavier Main‐Group Atoms -- 5.10 Chemical Bonding in Transition Metal Complexes: M(CO)n (M & -- equals -- Ni, Fe, Cr, Ti, Ca -- n & -- equals -- 4 - 8) -- 5.11 Summary -- Acknowledgments -- References -- Chapter 6 Partial Charges -- 6.1 Concept of Partial Charge -- 6.1.1 What is Partial Charge? -- 6.1.2 Theoretical Significances and Practical Applications of Partial Charge -- 6.1.3 Limitations of Partial Charge -- 6.1.4 What Is a Good Method of Calculating Partial Charges? -- 6.1.5 Classification of Partial Charge Calculation Methods -- 6.2 Methods of Calculating Partial Charges.
6.2.1 Partial Charges Based on Wavefunction -- 6.2.1.1 Mulliken Method -- 6.2.1.2 MMPA Methods -- 6.2.1.3 Löwdin Method -- 6.2.1.4 NPA Method -- 6.2.2 Partial Charges Based on Real Space Partition of Electron Density -- 6.2.2.1 AIM Method -- 6.2.2.2 Voronoi and VDD Methods -- 6.2.2.3 Hirshfeld Method -- 6.2.2.4 Hirshfeld‐I Method -- 6.2.3 Partial Charges Based on Fitting Electrostatic Potential -- 6.2.3.1 Common ESP Fitting Methods -- 6.2.3.2 RESP and Relevant Methods -- 6.2.4 Partial Charges Based on Equalization of Electronegativity -- 6.2.5 Partial Charges Based on Other Ideas -- 6.3 Partial Charges of Typical Molecules -- 6.4 Computer Codes for Evaluating Partial Charges -- 6.5 Concluding Remarks -- References -- Chapter 7 Atoms in Molecules -- 7.1 Introduction -- 7.2 The Quantum Theory of Atoms in Molecules (QTAIM) -- 7.3 QTAIM Atoms as Open Quantum Systems -- 7.3.1 Sector Density Operators of Quantum Atoms in Molecules -- 7.3.2 RDMs of Atoms in Molecules -- 7.4 Interacting Quantum Atoms (IQA) -- References -- Chapter 8 Effective Oxidation States Analysis -- 8.1 The Concept of Oxidation State -- 8.2 Oxidation State is Not Related to the Partial Charge -- 8.3 The Molecular Orbital Picture of the Ionic Approximation -- 8.4 Spin‐Resolved Effective Fragment Orbitals and Effective Oxidation States (EOS) Analysis -- 8.5 EOS Analysis from Different AIM Schemes -- 8.6 Summary -- References -- Chapter 9 Aromaticity and Antiaromaticity -- 9.1 Definition of Aromaticity -- 9.2 Physical Foundation -- 9.3 Measures of Aromaticity -- 9.3.1 Geometric Descriptors of Aromaticity -- 9.3.2 Energetic Descriptors of Aromaticity -- 9.3.3 Electronic Descriptors of Aromaticity -- 9.3.4 Magnetic Descriptors of Aromaticity -- 9.4 Rules of Aromaticity -- 9.4.1 Rules for Two‐Dimensional Aromaticity -- 9.4.2 Rules for Three‐Dimensional Aromaticity.
9.5 Metallabenzenes and Related Compounds as an Example -- References -- Chapter 10 Acidity and Basicity -- 10.1 Introduction -- 10.2 Definitions and Theories -- 10.2.1 Arrhenius Theory -- 10.2.2 Brønsted-Lowry Theory -- 10.2.3 Lewis Theory -- 10.2.4 Usanovich Definition -- 10.2.5 Lux-Flood Definition -- 10.2.6 Solvent System Definition -- 10.3 CDFT‐Based Reactivity Descriptors -- 10.4 CDFT‐Based Electronic Structure Principles -- 10.4.1 Equalization Principles -- 10.4.2 Hard-Soft Acid-Base (HSAB) Principle -- 10.4.3 Maximum Hardness (MHP), Minimum Polarizability (MPP), and Minimum Electrophilicity (MEP) Principles -- 10.5 Systemics of Lewis Acid-Base Reactions: Drago-Wayland Equation -- 10.6 Strengths of Acid and Bases -- 10.6.1 Ionic Product -- 10.6.2 pH Scale -- 10.6.3 Ionization Constants -- 10.6.4 Proton Affinity -- 10.6.5 Electronegativity -- 10.6.6 Hardness -- 10.6.7 Electrophilicity -- 10.7 Effect of External Perturbation -- 10.7.1 Steric Effects -- 10.7.2 Solvent Effects -- 10.7.3 Periodicity -- 10.7.4 Inductive Effect -- 10.7.5 Resonance Effect -- 10.8 CDFT and Acidity -- 10.9 CDFT and ITA -- 10.10 Are Strong Brønsted Acids Necessarily Strong Lewis Acids? -- 10.11 Summary -- Acknowledgment -- Conflict of Interest -- References -- Chapter 11 Sigma Hole Supported Interactions: Qualitative Features, Various Incarnations, and Disputations -- 11.1 Introduction -- 11.1.1 What's in a Name - The Sigma Hole Terminology and Concept -- 11.1.2 Donor-Acceptor Interaction Continuum -- 11.2 Many Incarnations and Roles of a Single Phenomenon -- 11.2.1 Hydrogen Bonding -- 11.2.2 Halogen Bonding and Sigma Holes on Group 17 Atoms -- 11.2.2.1 Common Origins -- 11.2.2.2 Cases of Halogen Bonding -- 11.2.2.3 The Sigma Hole and the Whole Story -- 11.2.3 Chalcogens -- 11.2.4 Pnictogens -- 11.2.5 Tetrels -- 11.2.6 Triels.
11.3 Related Interactions Elsewhere in the Main Group -- 11.3.1 Group 2 -- 11.3.2 Group 1 -- 11.3.3 Group 18 -- 11.4 Contested Interpretations -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 On the Generalization of Marcus Theory for Two‐State Photophysical Processes -- 12.1 Introduction -- 12.2 The Golden Rule Rate Expression -- 12.2.1 The Marcus Theory: The Classical Treatment -- 12.2.2 The Marcus-Levich-Jortner Expression: A Quantum Expression for High‐Frequency Modes -- 12.2.3 The Föster Theory: Separating Donor and Acceptor Parts in FCWD -- 12.3 Application -- 12.3.1 Electron Transfer -- 12.3.2 SET: Using Spectra for FCWD -- 12.3.3 TET and Other Energy Transfer Process with Spin Exchange -- 12.4 Conclusion -- Acknowledgments -- References -- Chapter 13 Computational Modeling of CO2 Reduction and Conversion via Heterogeneous and Homogeneous Catalysis -- 13.1 Introduction -- 13.2 Computational Methods -- 13.3 Activation and Reduction of CO2 -- 13.3.1 Computational Catalyst Design -- 13.3.1.1 Doping of Metal and Nonmetal Atoms -- 13.3.1.2 Structural Modification -- 13.3.1.3 Application of an External Electric Field -- 13.3.2 Electrocatalytic Reduction of CO2 -- 13.3.3 Hydrogenation Reduction of CO2 -- 13.4 Catalytic Coupling of CO2 with CH4 -- 13.5 Homogeneous Catalytic Conversion of CO2 -- 13.5.1 Catalytic CO2 Fixation into Cyclic Carbonates -- 13.5.2 CO2 Hydrogenation Catalyzed by Metal PNP‐Pincer Complexes -- 13.6 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 14 Excited States in Conceptual DFT -- 14.1 Introduction -- 14.2 Exploring Ground State Properties Thanks to Excited States -- 14.2.1 Context and Justification -- 14.2.2 Chemical Hardness Revisited -- 14.2.3 State‐Specific Dual Descriptors -- 14.2.4 Polarization Interaction -- 14.3 Exploring the Reactivity of Excited States with Excited States.
14.3.1 Local Chemical Potential.
Sommario/riassunto: This comprehensive book, edited by Shubin Liu, delves into the exploration of chemical concepts through theoretical and computational chemistry. It covers a broad range of topics including molecular orbital theory, valence bond theory, density functional theory, and energy decomposition analysis. The book aims to provide insights into chemical bonding, partial charges, aromaticity, and various other fundamental chemical concepts. The chapters are contributed by numerous experts, offering both static and dynamic properties of chemical entities. This resource is invaluable for researchers, academics, and advanced students in the field of chemistry who are interested in understanding the theoretical underpinnings and computational approaches that define chemical principles and empirical laws.
Titolo autorizzato: Exploring Chemical Concepts Through Theory and Computation  Visualizza cluster
ISBN: 9783527843411
3527843418
9783527843435
3527843434
9783527843428
3527843426
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019420803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui