Vai al contenuto principale della pagina

The Language of Self-Avoiding Walks : Connective Constants of Quasi-Transitive Graphs / / by Christian Lindorfer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lindorfer Christian Visualizza persona
Titolo: The Language of Self-Avoiding Walks : Connective Constants of Quasi-Transitive Graphs / / by Christian Lindorfer Visualizza cluster
Pubblicazione: Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Spektrum, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (72 pages)
Disciplina: 511.5
Soggetto topico: Algebra
Mathematics - Data processing
Geometry
Computational Mathematics and Numerical Analysis
Nota di contenuto: Graph Height Functions and Bridges -- Self-Avoiding Walks on One-Dimensional Lattices -- The Algebraic Theory of Context-Free Languages -- The Language of Walks on Edge-Labelled Graphs.
Sommario/riassunto: The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees. Contents Graph Height Functions and Bridges Self-Avoiding Walks on One-Dimensional Lattices The Algebraic Theory of Context-Free Languages The Language of Walks on Edge-Labelled Graphs Target Groups Researchers and students in the fields of graph theory, formal language theory and combinatorics Experts in these areas The Author Christian Lindorfer wrote his master’s thesis under the supervision of Prof. Dr. Wolfgang Woess at the Institute of Discrete Mathematics at Graz University of Technology, Austria.
Titolo autorizzato: The Language of Self-Avoiding Walks  Visualizza cluster
ISBN: 3-658-24764-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910309663303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: BestMasters, . 2625-3615