LEADER 02849nam 22005295 450 001 9910309663303321 005 20230811003023.0 010 $a3-658-24764-9 024 7 $a10.1007/978-3-658-24764-5 035 $a(CKB)4100000007389697 035 $a(MiAaPQ)EBC5630570 035 $a(DE-He213)978-3-658-24764-5 035 $a(PPN)233798021 035 $a(EXLCZ)994100000007389697 100 $a20190107d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Language of Self-Avoiding Walks $eConnective Constants of Quasi-Transitive Graphs /$fby Christian Lindorfer 205 $a1st ed. 2018. 210 1$aWiesbaden :$cSpringer Fachmedien Wiesbaden :$cImprint: Springer Spektrum,$d2018. 215 $a1 online resource (72 pages) 225 1 $aBestMasters,$x2625-3615 311 $a3-658-24763-0 327 $aGraph Height Functions and Bridges -- Self-Avoiding Walks on One-Dimensional Lattices -- The Algebraic Theory of Context-Free Languages -- The Language of Walks on Edge-Labelled Graphs. 330 $aThe connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees. Contents Graph Height Functions and Bridges Self-Avoiding Walks on One-Dimensional Lattices The Algebraic Theory of Context-Free Languages The Language of Walks on Edge-Labelled Graphs Target Groups Researchers and students in the fields of graph theory, formal language theory and combinatorics Experts in these areas The Author Christian Lindorfer wrote his master?s thesis under the supervision of Prof. Dr. Wolfgang Woess at the Institute of Discrete Mathematics at Graz University of Technology, Austria. 410 0$aBestMasters,$x2625-3615 606 $aAlgebra 606 $aMathematics$xData processing 606 $aGeometry 606 $aAlgebra 606 $aComputational Mathematics and Numerical Analysis 606 $aGeometry 615 0$aAlgebra. 615 0$aMathematics$xData processing. 615 0$aGeometry. 615 14$aAlgebra. 615 24$aComputational Mathematics and Numerical Analysis. 615 24$aGeometry. 676 $a511.5 700 $aLindorfer$b Christian$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767692 906 $aBOOK 912 $a9910309663303321 996 $aThe Language of Self-Avoiding Walks$92017433 997 $aUNINA