Vai al contenuto principale della pagina
| Autore: |
Li Yingping
|
| Titolo: |
Distributed Acoustic Sensing in Borehole Geophysics
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (621 pages) |
| Disciplina: | 550.72/3 |
| Soggetto topico: | Geophysics - Methodology |
| Acoustic imaging | |
| Borings | |
| Altri autori: |
MellorsRobert
ZhanGe
|
| Nota di contenuto: | Cover Page -- Series Page -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Recent Advances in Distributed Acoustic Sensing for Borehole geophysics -- 1.1 Introduction -- 1.2 Borehole Das Instrumentation and Modeling -- 1.3 Borehole Das Acquisition and Processing -- 1.4 Borehole Das Imaging and Inversion -- 1.5 Borehole Das Monitoring -- 1.6 Summary -- Acknowledgments -- References -- Part 1 Borehole Distributed Acoustic Sensing Instrumentation and Modeling -- Chapter 2 Integrated Distributed Strain Sensing for Wellbore and Reservoir monitoring -- 2.1 Introduction -- 2.2 Distributed Sensors Based on Optical Time Domain Technique -- 2.3 Optical Fiber Scattering Mechanism -- 2.4 Das with Different Types of Fibers -- 2.5 Low-frequency Das -- 2.6 Idss -- 2.7 Fiber Ruler -- 2.8 Distributed Rock Index .(or "R") Factor -- 2.9 Summary and Conclusion -- Acknowledgments -- References -- Chapter 3 A Microwave Photonics Optical Fiber Method for Measuring Distributed Strain for Hydrologic Applications in the Vadose and saturated Zones -- 3.1 Introduction -- 3.2 Distributed Sensing Using Optical Fibers with Microwave Photonics -- 3.2.1 Architecture and Theoretical Basis of Cmpi -- 3.2.2 Cmpi for Strain Measurement -- 3.2.3 Cmpi System Hardware -- 3.2.4 System Specification Trade-offs and Limitations -- 3.3 Strains Caused by Small Fluctuations in Air Pressure, an Application of Cmpi -- 3.3.1 Experimental Methods -- 3.3.2 Results -- Dry Experiment -- Fill-to-42 Experiment -- Drained Experiment -- Fill-to-29 Experiment -- Barrier Experiment -- Silt to 48.experiment -- Fill and Drain Experiment -- Analysis -- Discussion -- 3.4 Conclusion -- Acknowledgments -- Availability Statement -- References. |
| Chapter 4 A Fiber-optic, Multicomponent Sensor for Borehole Seismic Formation Imaging and for Monitoring of Natural or Induced seismicity -- 4.1 Introduction -- 4.2 Seismic Imaging -- 4.2.1 Borehole Seismic Data -- 4.2.2 Locating Microseismic Sources -- 4.3 Hybrid Sensor Array -- 4.4 Fiber-optic Point Sensors -- 4.4.1 the Interrogation System -- 4.4.2 the Fiber-optic 3c Accelerometer -- Laboratory Data -- Field Data -- Field Data at High Frequencies -- Field Data at Really Low Frequencies -- 4.4.3 a Fiber-optic Pressure Sensor -- 4.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 5 Three-component Distributed Acoustic Sensing Arrays with Three-dimensional Fiber Cable Deployment -- 5.1 Introduction -- 5.2 Fiber Cable Deployment Geometries of Das Arrays and Modeling Methods -- 5.2.1 Fiber Cable Deployment Geometries Of.das.arrays -- 5.2.2 Dtt Modeling Method -- 5.3 Dtt Modeling Results -- 5.3.1 Modeling Results for the Das Cross Array -- 5.3.2 Modeling Results for a Ccc Das Array -- 5.4 Correcting Das Amplitudes Distorted by Fiber Directivity -- 5.5 Synthetic Waveform Modeling with Two Velocity Models -- 5.6 Discussion -- 5.7 Conclusions -- Acknowledgments -- Availability Statement -- References -- Chapter 6 Comparing Distributed Acoustic Sensing and Geophone Vertical Seismic Profiling Imaging: Acquisition Efficiency of Distributed Acoustic Sensing Versus the Multicomponent Advantage of Geophone Data -- 6.1 Introduction -- 6.2 Numerical Simulated Wavefields -- 6.2.1 Simulated Wavefields in a Vertical Well -- 6.2.2 Simulated Wavefields in a Deviated Well -- 6.3 Comparison of Geophone and das images -- 6.4 Discussion and Conclusion -- Acknowledgments -- References -- Part 2 Borehole Distributed Acoustic Sensing Acquisition and Processing. | |
| Chapter 7 Smart Distributed Acoustic Sensing Uphole Acquisition System: bridging the Gap Between Surface Seismic and Borehole geophysics for Imaging and Monitoring in Complex Near-surface Environments -- 7.1 Introduction: Why Vertical Arrays? -- 7.2 Seismic Acquisition Aspects -- 7.3 Synthetic Case Study -- 7.3.1 Illumination and Angular Coverage Achieved By.vertical Arrays -- 7.3.2 Depth Imaging with Vertical Arrays -- 7.4 Field Experiment from A.desert Environment -- 7.4.1 Summary of the Field Acquisition -- 7.4.2 Characteristics of the Field Data and Comparison with Modeling -- 7.4.3 Processing and Imaging of Vertical-array Data -- 7.4.4 Comparison with Surface Seismic -- 7.4.5 Depth Imaging of Das Vertical-array Data and Image Sensitivity to the Near-surface Velocity -- 7.5 Near-surface Characterization Using the Smart Das Uphole Acquisition System -- 7.5.1 Smart Das Upholes -- 7.5.2 Simultaneous Tomographic Inversion Using Vertical and Horizontal Arrays -- 7.5.3 High-definition Surface-wave Inversion -- 7.5.4 High-definition Weathering Reflection Surveys -- 7.6 Toward 3D Implementation -- 7.6.1 Characterization and Imaging Below the Complex Near Surface -- 7.6.2 Monitoring Below a Complex and Changing Near.surface -- 7.7 Discussion -- 7.8 Conclusions -- Acknowledgments -- Availability Statement -- References -- Chapter 8 Joint Surface and Borehole Distributed Acoustic Sensing Vertical Seismic Profiling Data Acquisition and Processing -- 8.1 Introduction -- 8.2 Joint 3D Seismic Data and 3D VSP Data Acquisition -- 8.2.1 Joint Onshore 3D Seismic and 3D Das VSP Data.acquisition -- 8.2.2 Joint 3D OBN and 3D Das VSP Data Acquisition.in the East China Sea -- Joint 3D OBN and 3D Das VSP Data Acquisition In.the.middle East -- 8.3 3D Surface Seismic Data and Das VSP Data Processing. | |
| 8.3.1 Enhanced 3D Seismic Data Processing Using Jointly Acquired Das VSP Data -- 8.3.2 3D Das VSP Data Processing for the East China Sea -- 8.3.3 Integrated Interpretation -- 8.3.4 3D Das VSP Data Processing in the Middle East -- Key Data Processing Techniques -- 3d Das VSP Data Deblending Processing. -- Preprocessing and Denoising. -- H -14pt Signal Deconvolution. -- H -14pt Wavefield Separation. -- H -18pt Remove Multiples and Increase Frequency. -- Velocity Model Building and Image Processing -- Vsp First Break Tomography Modeling. -- Vsp Fwi. -- Jdfwi. -- One-way Wave .equation.multiple Migration (owemm). -- Gather Processing After Migration. -- 8.4 Conclusions -- Acknowledgments -- Availability Statement -- References -- Chapter 9 Distributed Acoustic Sensing Acquired Wellbore Seismic Data Using Hybrid Wireline Cable: Field Data Examples -- 9.1 Introduction -- 9.2 Description of the Technology -- 9.3 Anatomy of A.das Record Acquired with Hybrid Logging Cable -- 9.4 P-wave Velocity Information -- 9.5 S-wave Velocity Information -- 9.6 Comparison of Das and Geophone -- 9.7 Das VSP in Slant or Highly Deviated Wells -- 9.8 Q Analysis from Das Zero-offset Data -- 9.9 Offshore Examples -- 9.10 Efficiency, Hse, and Cost Considerations -- 9.11 Some Challenges and Limitations of the Technology -- 9.12 Conclusions -- Acknowledgments -- Availability Statement -- References -- Chapter 10 Geothermal Reservoir Characterization Using Distributed Acoustic sensing from Vertical Seismic Profiling in Six Geothermal fields in Japan -- 10.1 Introduction -- 10.2 Supercritical Water as an Energy.source -- 10.3 Sensitivity of Different Das Cable.constructions -- 10.3.1 Comparison of Different Optical Fibers -- 10.3.2 Field Test Using Das and Seismometers -- 10.4 Geothermal Studies Using Das.and Dts -- 10.5 Geophysical Studies at Medipolis and Ohnuma Geothermal Fields. | |
| 10.5.1 Case Study of Medipolis Geothermal Field -- 10.5.2 Case Study of Ohnuma Geothermal Field -- 10.5.3 Geothermal Importance of the Two Case Studies -- 10.6 Discussion of Influence of Temperature on Vp and vs -- 10.7 Fwi Approach -- 10.7.1 Simulation Model -- 10.7.2 Results of Fwi Simulation -- 10.8 Integration of Das Seismic Results, Dts Temperature Profile, and Existing Drilling and Geological and Geophysical Data -- 10.9 Discussion and Conclusions -- Acknowledgments -- References -- Chapter 11 Borehole and Surface Applications of Distributed Acoustic sensing for Characterization of the Cryosphere And glacial Environments -- 11.1 Introduction -- 11.2 Borehole Drilling Methods -- 11.3 Previous Borehole Experiments with Conventional Instrumentation -- 11.4 Borehole Applications of Das -- 11.5 Surface Applications of Das -- 11.6 Optimizing the Application of Das in Glaciological Settings -- 11.7 Practical Considerations -- 11.8 Discussion and Conclusions -- Acknowledgments -- Availability Statement -- References -- Chapter 12 Stratigraphic Test Well (hydrate-01) Distributed Acoustic Sensing 3D Vertical Seismic Profile Processing -- 12.1 Introduction -- 12.2 VSP Methodology and Das Technology -- 12.3 Depth Calibration and Data Acquisition -- 12.4 Data Qc -- 12.5 Processing -- 12.5.1 Preprocessing -- Time Picking -- Correction to Datum -- Geometrical Spreading Gain -- 12.5.2 Wavefield Separation -- Removing Downgoing Ps Waves -- Deconvolution -- Mapping and Migration -- 12.6 Structural Interpretation -- 12.7 Conclusion -- Acknowledgments -- Availability Statement -- References -- Chapter 13 Potential of Seismic Attenuation for Exploring Complex Media: a focus on Carbonate Rocks -- 13.1 Introduction -- 13.2 Attenuation Mechanisms -- 13.3 Correlation Between Seismic Attenuation and Key Petrophysical Parameters -- 13.3.1 Porosity and Permeability. | |
| 13.3.2 Fluid Saturation. | |
| Sommario/riassunto: | "Distributed Acoustic Sensing (DAS) is a technology that uses laser light pulses and a fiber optic cable to measure acoustic or vibration signals along the entire length of a fiber cable up to a few tens of kilometers. DAS technologies have been widely applied in geophysics, geotechnical engineering, hazard mitigation and prevention, safety and security fields."-- |
| Titolo autorizzato: | Distributed Acoustic Sensing in Borehole Geophysics ![]() |
| ISBN: | 9781394179268 |
| 139417926X | |
| 9781394179275 | |
| 1394179278 | |
| 9781394179251 | |
| 1394179251 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019340203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |