Vai al contenuto principale della pagina
| Autore: |
González-Pérez Adrían M
|
| Titolo: |
Singular Integrals in Quantum Euclidean Spaces
|
| Pubblicazione: | Providence : , : American Mathematical Society, , 2021 |
| ©2021 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (110 pages) |
| Disciplina: | 515/.723 |
| Soggetto topico: | Singular integrals |
| Calderón-Zygmund operator | |
| Pseudodifferential operators | |
| Noncommutative differential geometry | |
| Lp spaces | |
| Quantum theory | |
| Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Calderón-Zygmund, etc.) | |
| Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Harmonic analysis and PDE | |
| Operator theory -- Integral, integro-differential, and pseudodifferential operators -- Pseudodifferential operators | |
| Functional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- Noncommutative measure and integration | |
| Functional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- General theory of von Neumann algebras | |
| Quantum theory -- Groups and algebras in quantum theory -- Noncommutative geometry | |
| Classificazione: | 42B2042B3747G3046L5146L1081R60 |
| Altri autori: |
JungeMarius
ParcetJavier
|
| Note generali: | "July 2021. Volume 272." |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Quantum Euclidean spaces -- Calderón-Zygmund Lp theory -- Pseudodifferential Lp calculus -- Lp regularity for elliptic PDEs. |
| Sommario/riassunto: | "We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calderon-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the L2 level both Calderon-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove Lp-regularity of solutions for elliptic PDEs"-- |
| Titolo autorizzato: | Singular Integrals in Quantum Euclidean Spaces ![]() |
| ISBN: | 9781470467500 |
| 147046750X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910975326203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |