Vai al contenuto principale della pagina

Weak Solutions of Partial Differential Equations / / by Thierry Gallouët, Raphaèle Herbin



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Gallouët Thierry Visualizza persona
Titolo: Weak Solutions of Partial Differential Equations / / by Thierry Gallouët, Raphaèle Herbin Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (473 pages)
Disciplina: 515.35
Soggetto topico: Differential equations
Functional analysis
Differential Equations
Functional Analysis
Altri autori: HerbinRaphaèle  
Nota di contenuto: 1 Sobolev Spaces -- 2 Linear Elliptic Problems -- 3 Quasi-Linear Elliptic Problems -- 4 Parabolic Problems -- 5 Hyperbolic Problems.
Sommario/riassunto: This book offers a comprehensive introduction to the study of solutions of linear and nonlinear partial differential equations, covering elliptic, parabolic and hyperbolic types. It places particular emphasis on the concept of weak solution, a fundamental framework for addressing well-posed problems in PDE theory. The book examines the existence and uniqueness of solutions for various types of PDEs, along with their key properties. Additionally, many of the methods introduced are also applicable for analyzing the convergence of numerical schemes used to approximate these equations. Based on courses taught by the authors, this book is primarily aimed at graduate students and contains numerous exercises and problems with detailed solutions.
Titolo autorizzato: Weak Solutions of Partial Differential Equations  Visualizza cluster
ISBN: 3-031-98982-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911021971503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Mathématiques et Applications, . 2198-3275 ; ; 90