00870nam0 2200277 i 450 99623704950331620171114103659.0978-88-495-3135-020171114d2017----km y0itay5003 baitaITy 00 yGiustizia senza identitàvent'anni di scritti, pensieri idee e riflessioni di un penalista napoletanoMassimo Krogha cura di Andrea JelardiNapoliEdizioni scientifiche italiane2017359 p.24 cmGiustizia penaleItaliaBNCF345.45KROGH,Massimo747439JELARDI,AndreaITsalbcISBD996237049503316XXVI.1.C. 102886003 G.XXVI.1.C.403389BKGIUGiustizia senza identità1493218UNISA02512nam 22005295 450 991102197150332120250828130203.03-031-98982-110.1007/978-3-031-98982-7(MiAaPQ)EBC32274200(Au-PeEL)EBL32274200(CKB)40630499400041(DE-He213)978-3-031-98982-7(EXLCZ)994063049940004120250828d2025 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierWeak Solutions of Partial Differential Equations /by Thierry Gallouët, Raphaèle Herbin1st ed. 2025.Cham :Springer Nature Switzerland :Imprint: Springer,2025.1 online resource (473 pages)Mathématiques et Applications,2198-3275 ;903-031-98981-3 1 Sobolev Spaces -- 2 Linear Elliptic Problems -- 3 Quasi-Linear Elliptic Problems -- 4 Parabolic Problems -- 5 Hyperbolic Problems.This book offers a comprehensive introduction to the study of solutions of linear and nonlinear partial differential equations, covering elliptic, parabolic and hyperbolic types. It places particular emphasis on the concept of weak solution, a fundamental framework for addressing well-posed problems in PDE theory. The book examines the existence and uniqueness of solutions for various types of PDEs, along with their key properties. Additionally, many of the methods introduced are also applicable for analyzing the convergence of numerical schemes used to approximate these equations. Based on courses taught by the authors, this book is primarily aimed at graduate students and contains numerous exercises and problems with detailed solutions.Mathématiques et Applications,2198-3275 ;90Differential equationsFunctional analysisDifferential EquationsFunctional AnalysisDifferential equations.Functional analysis.Differential Equations.Functional Analysis.515.35Gallouët Thierry1845320Herbin Raphaèle1845321MiAaPQMiAaPQMiAaPQBOOK9911021971503321Weak Solutions of Partial Differential Equations4429186UNINA