Vai al contenuto principale della pagina

Data mining for genomics and proteomics : analysis of gene and protein expression data / / Darius M. Dzuida



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Dziuda Darius M Visualizza persona
Titolo: Data mining for genomics and proteomics : analysis of gene and protein expression data / / Darius M. Dzuida Visualizza cluster
Pubblicazione: Hoboken, N.J., : Wiley, c2010
Descrizione fisica: 1 online resource (348 p.)
Disciplina: 572.8/6
Soggetto topico: Genomics - Data processing
Proteomics - Data processing
Data mining
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: DATA MINING FOR GENOMICS AND PROTEOMICS; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 INTRODUCTION; 1.1 Basic Terminology; 1.1.1 The Central Dogma of Molecular Biology; 1.1.2 Genome; 1.1.3 Proteome; 1.1.4 DNA (Deoxyribonucleic Acid); 1.1.5 RNA (Ribonucleic Acid); 1.1.6 mRNA (messenger RNA); 1.1.7 Genetic Code; 1.1.8 Gene; 1.1.9 Gene Expression and the Gene Expression Level; 1.1.10 Protein; 1.2 Overlapping Areas of Research; 1.2.1 Genomics; 1.2.2 Proteomics; 1.2.3 Bioinformatics; 1.2.4 Transcriptomics and Other -omics . . .; 1.2.5 Data Mining; 2 BASIC ANALYSIS OF GENE EXPRESSION MICROARRAY DATA
2.1 Introduction2.2 Microarray Technology; 2.2.1 Spotted Microarrays; 2.2.2 Affymetrix GeneChip(®) Microarrays; 2.2.3 Bead-Based Microarrays; 2.3 Low-Level Preprocessing of Affymetrix Microarrays; 2.3.1 MAS5; 2.3.2 RMA; 2.3.3 GCRMA; 2.3.4 PLIER; 2.4 Public Repositories of Microarray Data; 2.4.1 Microarray Gene Expression Data Society (MGED) Standards; 2.4.2 Public Databases; 2.4.2.1 Gene Expression Omnibus (GEO); 2.4.2.2 ArrayExpress; 2.5 Gene Expression Matrix; 2.5.1 Elements of Gene Expression Microarray Data Analysis; 2.6 Additional Preprocessing, Quality Assessment, and Filtering
2.6.1 Quality Assessment2.6.2 Filtering; 2.7 Basic Exploratory Data Analysis; 2.7.1 t Test; 2.7.1.1 t Test for Equal Variances; 2.7.1.2 t Test for Unequal Variances; 2.7.2 ANOVA F Test; 2.7.3 SAM t Statistic; 2.7.4 Limma; 2.7.5 Adjustment for Multiple Comparisons; 2.7.5.1 Single-Step Bonferroni Procedure; 2.7.5.2 Single-Step Sidak Procedure; 2.7.5.3 Step-Down Holm Procedure; 2.7.5.4 Step-Up Benjamini and Hochberg Procedure; 2.7.5.5 Permutation Based Multiplicity Adjustment; 2.8 Unsupervised Learning (Taxonomy-Related Analysis); 2.8.1 Cluster Analysis
2.8.1.1 Measures of Similarity or Distance2.8.1.2 K-Means Clustering; 2.8.1.3 Hierarchical Clustering; 2.8.1.4 Two-Way Clustering and Related Methods; 2.8.2 Principal Component Analysis; 2.8.3 Self-Organizing Maps; Exercises; 3 BIOMARKER DISCOVERY AND CLASSIFICATION; 3.1 Overview; 3.1.1 Gene Expression Matrix . . . Again; 3.1.2 Biomarker Discovery; 3.1.3 Classification Systems; 3.1.3.1 Parametric and Nonparametric Learning Algorithms; 3.1.3.2 Terms Associated with Common Assumptions Underlying Parametric Learning Algorithms; 3.1.3.3 Visualization of Classification Results
3.1.4 Validation of the Classification Model3.1.4.1 Reclassification; 3.1.4.2 Leave-One-Out and K-Fold Cross-Validation; 3.1.4.3 External and Internal Cross-Validation; 3.1.4.4 Holdout Method of Validation; 3.1.4.5 Ensemble-Based Validation (Using Out-of-Bag Samples); 3.1.4.6 Validation on an Independent Data Set; 3.1.5 Reporting Validation Results; 3.1.5.1 Binary Classifiers; 3.1.5.2 Multiclass Classifiers; 3.1.6 Identifying Biological Processes Underlying the Class Differentiation; 3.2 Feature Selection; 3.2.1 Introduction; 3.2.2 Univariate Versus Multivariate Approaches
3.2.3 Supervised Versus Unsupervised Methods
Sommario/riassunto: Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.
Titolo autorizzato: Data mining for genomics and proteomics  Visualizza cluster
ISBN: 1-282-70757-4
9786612707575
0-470-59341-5
0-470-59340-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910140840803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wiley Series on Methods and Applications in Data Mining