Vai al contenuto principale della pagina

Converting power into chemicals and fuels : power-to-X technology for a sustainable future / / Martin Bajus



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bajus Martin <1943-> Visualizza persona
Titolo: Converting power into chemicals and fuels : power-to-X technology for a sustainable future / / Martin Bajus Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, , [2023]
©2023
Edizione: First edition.
Descrizione fisica: 1 online resource (508 pages)
Disciplina: 621.3126
Soggetto topico: Energy storage
Energy conversion
Renewable energy sources
Soggetto non controllato: Chemistry, Technical
Science
Note generali: Includes index.
Nota di contenuto: Intro -- Converting Power into Chemicals and Fuels -- Contents -- About the Book -- Preface -- Acknowledgments -- General Literature -- Nomenclature -- Abbreviations and Acronyms -- 1 Power-to-Chemical Technology -- 1.1 Introduction -- 1.2 Power-to-Chemical Engineering -- 1.2.1 Carbon Dioxide Thermodynamics -- 1.2.2 Carbon Dioxide Aromatization Thermodynamics -- 1.2.3 Reaction Mechanism of Carbon Dioxide Methanation -- 1.2.4 Water Electrolysis Thermodynamics -- 1.2.5 Methane Pyrolysis Reaction Thermodynamic Consideration -- 1.2.5.1 The Carbon-Hydrogen System -- 1.2.6 Reaction Kinetics and Mechanism -- 1.2.7 Thermal Mechanism of Methane Pyrolysis into a Sustainable Hydrogen -- 1.2.8 Catalytic Mechanism Splitting of Methane into a Sustainable Hydrogen -- 1.2.9 Conversion of Methane over Metal Catalysts into a Sustainable Hydrogen -- 1.2.9.1 Nickel Catalysts -- 1.2.9.2 Iron Catalysts -- 1.2.9.3 Regeneration of Metal Catalysts -- 1.2.10 Conversion of Methane over Carbon Catalysts into Clean Hydrogen -- 1.2.10.1 Activity of Carbon Catalysts -- 1.2.10.2 Stability and Deactivation of Carbon Catalysts -- 1.2.10.3 Regeneration of Carbon Catalysts -- 1.2.10.4 Co-Feeding to Extend the Lifetime of Carbon Catalysts -- 1.2.11 Reactors -- 1.2.11.1 Conversion, Selectivity and Yields -- 1.2.11.2 Modelling Approach of the Structured Catalytic Reactors -- 1.2.11.3 Reactor Concept for Catalytic Carbon Dioxide Methanation -- 1.2.11.4 Monolithic Reactors -- 1.2.11.5 Mass Transfer in the Honeycomb and Slurry Bubble Column Reactor -- 1.2.11.6 Heat Transfer in Honeycomb and Slurry Bubble Column Reactors -- 1.2.11.7 Process Design -- 1.2.11.8 Comparison and Outlook -- 1.3 Potential Steps Towards Sustainable Hydrocarbon Technology: Vision and Trends -- 1.3.1 Technology Readiness Levels -- 1.3.2 A Vision for the Oil Refinery of 2030.
1.3.3 The Transition from Fuels to Chemicals -- 1.3.3.1 Crude Oil to Chemicals Investments -- 1.3.3.2 Available Crude-to-Chemicals Routes -- 1.3.4 Business Trends: Petrochemicals 2025 -- 1.3.4.1 Asia-Pacific -- 1.3.4.2 Middle East -- 1.3.4.3 United States -- 1.4 Digital Transformation -- 1.4.1 Benefits of Digital Transformation -- 1.4.2 A New Workforce and Workplace -- 1.4.3 Technology Investment -- 1.4.4 The Greening of the Downstream Industry -- 1.4.4.1 Sustainable Alkylation Technology -- 1.4.4.2 Ecofriendly Catalyst -- 1.5 RAM Modelling -- 1.5.1 RAM1 Site Model -- 1.5.2 RAM2 Plant Models -- 1.5.3 RAM3 Models -- 1.5.4 RAM Modelling Benefit -- 1.6 Conclusions -- Further Reading -- 2 The Green Shift in Power-to-Chemical Technology and Power-to-Chemical Engineering: A Framework for a Sustainable Future -- 2.1 Introduction -- 2.2 Eco-Friendly Catalyst -- 2.2.1 Development of Catalysts Supported on Carbons for Carbon Dioxide Hydrogenation -- 2.2.2 Properties of Carbon Supports -- 2.3 Hydrogen -- 2.3.1 Different Colours and Costs of Hydrogen -- 2.3.1.1 Blue Hydrogen -- 2.3.1.2 Green Hydrogen -- 2.3.1.3 Grey Hydrogen -- 2.3.1.4 Pink Hydrogen -- 2.3.1.5 Yellow Hydrogen -- 2.3.1.6 Multi-Coloured Hydrogen -- 2.3.1.7 Hydrogen Cost -- 2.4 Alternative Feedstocks -- 2.4.1 Carbon Dioxide-Derived Chemicals -- 2.5 Alternative Power-to-X-Technology -- 2.5.1 Power-to-X-Technology to Produce Electrochemicals and Electrofuels -- 2.6 Partial Oxidation of Methane -- 2.7 Biorefining -- 2.8 Sustainable Production to Advance the Circular Economy -- 2.8.1 Introduction -- 2.8.2 Circular Economy -- 2.8.2.1 Sustainability -- 2.8.2.2 Scope -- 2.8.2.3 Background of the Circular Economy -- 2.8.2.3.1 Emergence of the Idea -- 2.8.2.3.2 Moving Away from the Linear Model -- 2.8.2.3.3 Towards the Circular Economy -- 2.8.3 Circular Business Models.
2.8.4 Industries Adopting a Circular Economy -- 2.8.4.1 Minimizing Dependence on Fossil Fuels -- 2.8.4.2 Minimizing the Impact of Chemical Synthesis and Manufacturing -- 2.8.4.3 Future Research Needs in Developing a Circular Economy -- 2.9 New Chemical Technologies -- 2.9.1 Renewable Power -- Further Reading -- 3 Storage Renewable Power-to-Chemicals -- 3.1 Introduction -- 3.2 Terminology -- 3.3 Energy Storage Systems -- 3.4 World Primary Energy Consumption -- 3.4.1 2019 Briefly -- 3.4.2 Energy in 2020 -- 3.4.2.1 Not Just Green but Greening -- 3.4.2.2 For Energy, 2020 Was a Year Like No Other -- 3.4.2.3 Glasgow Climate Pact -- 3.4.2.4 Energy in 2020: What Happened and How Surprising Was It -- 3.4.2.5 How Should We Think About These Reductions -- 3.4.2.6 What Can We Learn from the COVID-induced Stress Test -- 3.4.2.7 Progress Since Paris - How Is the World Doing -- 3.5 Carbon Dioxide Emissions -- 3.5.1 Carbon Footprint -- 3.5.1.1 Climate-driven Warming -- 3.5.2 Carbon Emissions in 2020 -- 3.6 Clean Fuels ‒ the Advancement to Zero Sulfur -- 3.7 Renewables in 2019 -- 3.8 Hydroelectricity and Nuclear Energy -- 3.9 Conclusion -- Further Reading -- 4 Carbon Capture, Utilization and Storage Technologies -- 4.1 Industrial Sources of Carbon Dioxide -- 4.2 Carbon Capture, Utilization and Storage Technologies -- 4.3 Carbon Dioxide Capture -- 4.4 Developing and Deploying CCUS Technology in the Oil and Gas Industry -- 4.5 Sustainable Steel/Chemicals Production: Capturing the Carbon in the Material Value Chain -- 4.5.1 Valorisation of Steel Mill Gases -- 4.5.2 Summary and Outlook -- Further Reading -- 5 Integrated Refinery Petrochemical Complexes Including Power-to-X Technologies -- 5.1 Introduction -- 5.2 Synergies Between Refining and Petrochemical Assets -- 5.2.1 Reaching Maximum Added Value - Integrated Refining Schemes.
5.2.1.1 Fluid Catalytic Cracking Alternates -- 5.2.1.2 Hydrocracking Alternates -- 5.2.2 Comparisons and Sensitivities to Product/Utility Pricing -- 5.2.3 Options for Further Increasing the Petrochemical Value Chain -- 5.3 Carbon Dioxide Emissions -- 5.3.1 Effect of a Carbon Dioxide Tax -- 5.3.2 Crude Oil Effects -- 5.4 Summary -- 5.5 Power- to-X Technology -- 5.6 The Role of Nuclear Power -- 5.6.1 Small Nuclear Power Reactors -- 5.6.2 Conclusion -- Further Reading -- 6 Power-to-Hydrogen Technology -- 6.1 Introduction -- 6.2 Traditional and Developing Technologies for Hydrogen Production -- 6.3 Dry Reforming of Methane -- 6.4 Tri-reforming of Methane -- 6.5 Greenfield Technology Option → Low Carbon Emission Routes -- 6.5.1 Water Electrolysis -- 6.5.1.1 Alkaline Electrolysis -- 6.5.1.2 Polymer Electrolyte Membrane Electrolysis -- 6.5.1.3 Solid Oxide Electrolysis -- 6.5.2 Methane Pyrolysis -- 6.5.2.1 Process Concepts for Industrial Application -- 6.5.2.2 Perspectives of the Carbon Coproduct -- 6.5.3 Thermochemical Processes -- 6.5.4 Photocatalytic Processes -- 6.5.5 Biomass Electro-Reforming -- 6.5.6 Microorganisms -- 6.5.7 Hydrogen from Other Industrial Processes -- 6.5.8 Hydrogen Production Cost -- 6.5.9 Electrolysers -- 6.5.10 Carbon Footprint -- 6.6 Advances in Chemical Carriers for Hydrogen -- 6.6.1 Demand Drivers -- 6.6.2 Options for Hydrogen Deployment -- 6.6.3 Advances in Hydrogen Storage/Transport Technology -- 6.6.4 Global Supply Chain -- 6.6.5 Power-to-Gas Demo -- 6.6.5.1 Hydrogen Fuelling Stations -- 6.6.5.2 Pathway to Commercialization -- 6.6.5.3 Transportation Studies in North America -- 6.6.6 Future Applications -- 6.7 Ammonia Fuel Cells -- 6.7.1 Proton-Conducting Fuel Cells -- 6.7.2 Polymer Electrolyte Membrane Fuel Cells -- 6.7.3 Proton-conducting Solid Oxide Fuel Cells -- 6.7.4 Alkaline Fuel Cells.
6.7.5 Direct Ammonia Solid Oxide Fuel Cell -- 6.7.6 Equilibrium Potential and Efficiency of the Ammonia-Fed SOFC -- 6.8 Conclusions -- Further Reading -- 7 Power-to-Fuels -- 7.1 Introduction -- 7.2 Selection of Fuel Candidates -- 7.2.1 Fuel Production Processes -- 7.3 Power-to-Methane Technology -- 7.3.1 Carbon Dioxide Electrochemical Reduction -- 7.3.2 Carbon Dioxide Hydrogenation -- 7.4 Power-to-Methanol -- 7.5 Power-to-Dimethyl Ether -- 7.6 Chemical Conversion Efficiency -- 7.6.1 Exergy -- 7.6.2 Exergy Efficiency -- 7.6.3 Economic and Environmental Evaluation -- 7.6.4 Fuel Assessment -- 7.6.5 Performance of Fuel Production Processes -- 7.6.6 Process Chain Evaluation -- 7.6.7 Fuel Cost -- 7.7 Well-to-Wheel Greenhouse Gas Emissions -- 7.7.1 Environmental Impact -- 7.7.2 Infrastructure -- 7.7.3 Efficiency -- 7.7.4 Energy/Power Density -- 7.7.5 Pollutant Emissions -- 7.8 Gasoline Electrofuels -- 7.9 Diesel Electrofuels -- 7.10 Electrofuels and/or Electrochemicals -- 7.10.1 Physico-Chemical Properties -- 7.10.1.1 Density -- 7.10.1.2 Tribological Properties -- 7.10.1.3 Combustion Characteristics -- 7.10.1.4 Combustion and Emissions -- 7.10.2 Diesel Engine Efficiency -- 7.10.3 Potential of Diesel Electrofuels -- 7.11 Maturity, TRL, Production and Electrolysis Costs -- 7.11.1 Summary -- 7.12 Power-to-Liquid Technology -- 7.12.1 Power-to-Jet Fuel -- 7.12.2 Power-to-Diesel -- 7.13 Conclusion and Outlook -- Further Reading -- 8 Power-to-Light Alkenes -- 8.1 Oxidative Dehydrogenation -- 8.1.1 Carbon Dioxide as a Soft Oxidant for Catalytic Dehydrogenation -- 8.1.2 Carbon Dioxide: Oxidative Coupling of Methane -- 8.1.3 From Carbon Dioxide to Lower Olefins -- 8.1.4 Low-Carbon Production of Ethylene and Propylene -- 8.1.4.1 Energy Demand per Unit of Ethylene/Propylene Production via Methanol.
8.1.4.2 Carbon Dioxide Reduction per Unit of Ethylene/Propylene Production.
Sommario/riassunto: Understand the pivotal role that the petrochemical industry will play in the energy transition by integrating renewable or low-carbon alternatives. The book stresses the versatility of hydrogen as an enabler of the renewable energy system, an energy vector that can be transported and stored, and a fuel for the transportation sector, heating of buildings and providing heat and feedstock to industry.
Titolo autorizzato: Converting power into chemicals and fuels  Visualizza cluster
ISBN: 1-394-18577-4
1-394-18426-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830649403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui