Vai al contenuto principale della pagina

Anatomy and Plasticity in Large-Scale Brain Models



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Arjen van Ooyen Visualizza persona
Titolo: Anatomy and Plasticity in Large-Scale Brain Models Visualizza cluster
Pubblicazione: Frontiers Media SA, 2017
Descrizione fisica: 1 electronic resource (173 p.)
Soggetto non controllato: Supercomputing
structural plasticity
connectivity
brain models
simulation
Anatomy
high-performance computing
Persona (resp. second.): Markus Butz
Wolfram Schenck
Sommario/riassunto: Supercomputing facilities are becoming increasingly available for simulating activity dynamics in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity). The papers in this Ebook, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader aware of the methods and models by which large-scale brain networks running on supercomputers can be extended to include anatomical detail and plasticity.Supercomputing facilities are becoming increasingly available for simulating activity dynamics in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity). The papers in this Ebook, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader aware of the methods and models by which large-scale brain networks running on supercomputers can be extended to include anatomical detail and plasticity.
Titolo autorizzato: Anatomy and Plasticity in Large-Scale Brain Models  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910220040403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui