Vai al contenuto principale della pagina

Finite presentability of S-arithmetic groups : compact presentability of solvable groups / / Herbert Abels



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Abels Herbert <1941-> Visualizza persona
Titolo: Finite presentability of S-arithmetic groups : compact presentability of solvable groups / / Herbert Abels Visualizza cluster
Pubblicazione: Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1987]
©1987
Edizione: 1st ed. 1987.
Descrizione fisica: 1 online resource (VI, 182 p.)
Disciplina: 512.2
Soggetto topico: Arithmetic groups
Lie groups
Linear algebraic groups
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Compact presentability and contracting automorphisms -- Filtrations of Lie algebras and groups -- A necessary condition for compact presentability -- Implications of the necessary condition -- The second homology -- S-arithmetic groups -- S-arithmetic solvable groups.
Sommario/riassunto: The problem of determining which S-arithmetic groups have a finite presentation is solved for arbitrary linear algebraic groups over finite extension fields of #3. For certain solvable topological groups this problem may be reduced to an analogous problem, that of compact presentability. Most of this monograph deals with this question. The necessary background material and the general framework in which the problem arises are given partly in a detailed account, partly in survey form. In the last two chapters the application to S-arithmetic groups is given: here the reader is assumed to have some background in algebraic and arithmetic group. The book will be of interest to readers working on infinite groups, topological groups, and algebraic and arithmetic groups.
Titolo autorizzato: Finite presentability of S-arithmetic groups  Visualizza cluster
ISBN: 3-540-47198-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466492103316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1261