LEADER 02953nam 2200637 450 001 996466492103316 005 20220908155032.0 010 $a3-540-47198-7 024 7 $a10.1007/BFb0079708 035 $a(CKB)1000000000437544 035 $a(SSID)ssj0000323153 035 $a(PQKBManifestationID)12099165 035 $a(PQKBTitleCode)TC0000323153 035 $a(PQKBWorkID)10312539 035 $a(PQKB)11008399 035 $a(DE-He213)978-3-540-47198-1 035 $a(MiAaPQ)EBC5585059 035 $a(Au-PeEL)EBL5585059 035 $a(OCoLC)1066178901 035 $a(MiAaPQ)EBC6842255 035 $a(Au-PeEL)EBL6842255 035 $a(PPN)155228021 035 $a(EXLCZ)991000000000437544 100 $a20220908d1987 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFinite presentability of S-arithmetic groups $ecompact presentability of solvable groups /$fHerbert Abels 205 $a1st ed. 1987. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1987] 210 4$dİ1987 215 $a1 online resource (VI, 182 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1261 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-17975-5 311 $a3-540-17975-5 327 $aCompact presentability and contracting automorphisms -- Filtrations of Lie algebras and groups -- A necessary condition for compact presentability -- Implications of the necessary condition -- The second homology -- S-arithmetic groups -- S-arithmetic solvable groups. 330 $aThe problem of determining which S-arithmetic groups have a finite presentation is solved for arbitrary linear algebraic groups over finite extension fields of #3. For certain solvable topological groups this problem may be reduced to an analogous problem, that of compact presentability. Most of this monograph deals with this question. The necessary background material and the general framework in which the problem arises are given partly in a detailed account, partly in survey form. In the last two chapters the application to S-arithmetic groups is given: here the reader is assumed to have some background in algebraic and arithmetic group. The book will be of interest to readers working on infinite groups, topological groups, and algebraic and arithmetic groups. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1261 606 $aArithmetic groups 606 $aLie groups 606 $aLinear algebraic groups 615 0$aArithmetic groups. 615 0$aLie groups. 615 0$aLinear algebraic groups. 676 $a512.2 700 $aAbels$b Herbert$f1941-$054207 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466492103316 996 $aFinite presentability of S-arithmetic groups$978545 997 $aUNISA