top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
System verification [[electronic resource] ] : proving the design solution satisfies the requirements / / Jeffrey O. Grady
System verification [[electronic resource] ] : proving the design solution satisfies the requirements / / Jeffrey O. Grady
Autore Grady Jeffrey O
Pubbl/distr/stampa Amsterday ; ; Boston, : Elsevier/Academic Press, c2007
Descrizione fisica 1 online resource (367 p.)
Disciplina 620.001/171
Soggetto topico Process control
Systems engineering
ISBN 1-281-05067-9
9786611050672
0-08-048978-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; System Verification; Copyright Page; Table of Contents; LIST OF ILLUSTRATIONS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; LIST OF ABBREVIATIONS; Part 1 SETTING THE STAGE; Chapter 1.1 The Global Verification Situation; 1.1.1 The Meaning of the Word Verification; 1.1.2 Verification Classes; 1.1.2.1 Item Qualification; 1.1.2.2 Item Acceptance; 1.1.2.3 System Test and Evaluation; 1.1.3 Feedback into Product Models; 1.1.4 Technical Data Assessment; 1.1.5 Process Verification; 1.1.6 Program Assembly of the Verification Process; 1.1.6.1 High-Rate Production Program
1.1.6.2 Low-Volume, High-Dollar Production Program1.1.6.3 One-of-a-Kind Production Program; 1.1.7 Verification Documentation Intensity; 1.1.8 In the Aggregate; Chapter 1.2 Introduction to System Development; 1.2.1 What Is a System?; 1.2.2 System Development; 1.2.3 Three Steps on the Way to Great Systems; 1.2.4 Organizational Structure; 1.2.5 The Systems Approach; 1.2.6 The Two Vs; 1.2.7 The Foundation of System Engineering; 1.2.8 System Development Phasing Overview; 1.2.9 Toward a Standard Process; 1.2.10 Development Environments; 1.2.10.1 The Waterfall Development Model
1.2.10.2 The Spiral Development Model1.2.10.3 The V Development Model; 1.2.10.4 The N Development Model; 1.2.10.5 Development Environment Integration; Chapter 1.3 Requirements Analysis Overview; 1.3.1 Requirements; 1.3.2 The Need and Its Initial Expansion Using Traditional Structured Analysis; 1.3.3 Structured Decomposition Using Traditional Structured Analysis; 1.3.3.1 Functional Analysis; 1.3.3.2 Performance Requirements Analysis; 1.3.3.3 Design Constraints Analysis; 1.3.3.3.1 Interface Requirements Analysis; 1.3.3.3.2 Environmental Requirements Analysis
1.3.3.3.3 Specialty Engineering Requirements Analysis1.3.4 Computer Software Approaches; 1.3.5 Verification Requirements; 1.3.6 Applicable Documents; 1.3.7 Process Requirements Analysis; Part 2 ITEM QUALIFICATION VERIFICATION; Chapter 2.1 Verification Requirements; 2.1.1 Verification Documentation; 2.1.2 Item Planning Fundamentals; 2.1.2.1 Traceability Matrix; 2.1.2.2 Verification Methods; 2.1.2.3 Product and Verification Levels; 2.1.2.4 Verification Classes; 2.1.2.5 Items Subject to Qualification and Acceptance; 2.1.2.6 Verification Directionality; 2.1.2.7 Product Verification Layering
2.1.2.8 Verification Requirements Definition Timing2.1.3 Verification Requirements Analysis; 2.1.3.1 Selecting the Method; 2.1.3.2 Writing Responsibility and Support; 2.1.3.3 Writing the Verification Paragraph; 2.1.4 Verification Planning, Data Capture, and Documentation; 2.1.5 Section 4 Structure; 2.1.5.1 MIL-STD-961E Structure; 2.1.5.2 An Alternate Structure; 2.1.5.3 External Verification Requirements Documentation; 2.1.6 Verification Computer Databases; Chapter 2.2 Top-Down Verification Planning; 2.2.1 A Matter of Scale; 2.2.2 Expansion of Function F44; 2.2.3 Item Qualification Process
2.2.4 The Planning Transform
Record Nr. UNINA-9910784659503321
Grady Jeffrey O  
Amsterday ; ; Boston, : Elsevier/Academic Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
System verification [[electronic resource] ] : proving the design solution satisfies the requirements / / Jeffrey O. Grady
System verification [[electronic resource] ] : proving the design solution satisfies the requirements / / Jeffrey O. Grady
Autore Grady Jeffrey O
Pubbl/distr/stampa Amsterday ; ; Boston, : Elsevier/Academic Press, c2007
Descrizione fisica 1 online resource (367 p.)
Disciplina 620.001/171
Soggetto topico Process control
Systems engineering
ISBN 1-281-05067-9
9786611050672
0-08-048978-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; System Verification; Copyright Page; Table of Contents; LIST OF ILLUSTRATIONS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; LIST OF ABBREVIATIONS; Part 1 SETTING THE STAGE; Chapter 1.1 The Global Verification Situation; 1.1.1 The Meaning of the Word Verification; 1.1.2 Verification Classes; 1.1.2.1 Item Qualification; 1.1.2.2 Item Acceptance; 1.1.2.3 System Test and Evaluation; 1.1.3 Feedback into Product Models; 1.1.4 Technical Data Assessment; 1.1.5 Process Verification; 1.1.6 Program Assembly of the Verification Process; 1.1.6.1 High-Rate Production Program
1.1.6.2 Low-Volume, High-Dollar Production Program1.1.6.3 One-of-a-Kind Production Program; 1.1.7 Verification Documentation Intensity; 1.1.8 In the Aggregate; Chapter 1.2 Introduction to System Development; 1.2.1 What Is a System?; 1.2.2 System Development; 1.2.3 Three Steps on the Way to Great Systems; 1.2.4 Organizational Structure; 1.2.5 The Systems Approach; 1.2.6 The Two Vs; 1.2.7 The Foundation of System Engineering; 1.2.8 System Development Phasing Overview; 1.2.9 Toward a Standard Process; 1.2.10 Development Environments; 1.2.10.1 The Waterfall Development Model
1.2.10.2 The Spiral Development Model1.2.10.3 The V Development Model; 1.2.10.4 The N Development Model; 1.2.10.5 Development Environment Integration; Chapter 1.3 Requirements Analysis Overview; 1.3.1 Requirements; 1.3.2 The Need and Its Initial Expansion Using Traditional Structured Analysis; 1.3.3 Structured Decomposition Using Traditional Structured Analysis; 1.3.3.1 Functional Analysis; 1.3.3.2 Performance Requirements Analysis; 1.3.3.3 Design Constraints Analysis; 1.3.3.3.1 Interface Requirements Analysis; 1.3.3.3.2 Environmental Requirements Analysis
1.3.3.3.3 Specialty Engineering Requirements Analysis1.3.4 Computer Software Approaches; 1.3.5 Verification Requirements; 1.3.6 Applicable Documents; 1.3.7 Process Requirements Analysis; Part 2 ITEM QUALIFICATION VERIFICATION; Chapter 2.1 Verification Requirements; 2.1.1 Verification Documentation; 2.1.2 Item Planning Fundamentals; 2.1.2.1 Traceability Matrix; 2.1.2.2 Verification Methods; 2.1.2.3 Product and Verification Levels; 2.1.2.4 Verification Classes; 2.1.2.5 Items Subject to Qualification and Acceptance; 2.1.2.6 Verification Directionality; 2.1.2.7 Product Verification Layering
2.1.2.8 Verification Requirements Definition Timing2.1.3 Verification Requirements Analysis; 2.1.3.1 Selecting the Method; 2.1.3.2 Writing Responsibility and Support; 2.1.3.3 Writing the Verification Paragraph; 2.1.4 Verification Planning, Data Capture, and Documentation; 2.1.5 Section 4 Structure; 2.1.5.1 MIL-STD-961E Structure; 2.1.5.2 An Alternate Structure; 2.1.5.3 External Verification Requirements Documentation; 2.1.6 Verification Computer Databases; Chapter 2.2 Top-Down Verification Planning; 2.2.1 A Matter of Scale; 2.2.2 Expansion of Function F44; 2.2.3 Item Qualification Process
2.2.4 The Planning Transform
Record Nr. UNINA-9910808933303321
Grady Jeffrey O  
Amsterday ; ; Boston, : Elsevier/Academic Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
TS 16949 : insights from a third party auditor with a process approach audit checklist / / Karen Welch
TS 16949 : insights from a third party auditor with a process approach audit checklist / / Karen Welch
Autore Welch Karen <1961->
Pubbl/distr/stampa Milwaukee, Wisconsin : , : ASQ Quality Press, , 2005
Descrizione fisica 1 online resource (246 p.)
Disciplina 658.4/013
Soggetto topico Quality control - Auditing
Process control
Soggetto genere / forma Electronic books.
ISBN 600-00-4791-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910452540503321
Welch Karen <1961->  
Milwaukee, Wisconsin : , : ASQ Quality Press, , 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto genere / forma Electronic books.
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910459794203321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910787493803321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910828000603321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
Autore Bhote Keki R. <1925->
Pubbl/distr/stampa New York, : AMACOM/American Management Association, c2002
Descrizione fisica xxxvi, 404 p. : ill
Disciplina 658.5/62
Soggetto topico Process control
Soggetto genere / forma Electronic books.
ISBN 1-61583-984-4
0-8144-2641-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910455211103321
Bhote Keki R. <1925->  
New York, : AMACOM/American Management Association, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
Autore Bhote Keki R. <1925->
Pubbl/distr/stampa New York, : AMACOM/American Management Association, c2002
Descrizione fisica xxxvi, 404 p. : ill
Disciplina 658.5/62
Soggetto topico Process control
ISBN 1-61583-984-4
0-8144-2641-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910778840003321
Bhote Keki R. <1925->  
New York, : AMACOM/American Management Association, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
The ultimate Six Sigma [[electronic resource] ] : beyond quality excellence to total business excellence / / Keki R. Bhote
Autore Bhote Keki R. <1925->
Edizione [1st ed.]
Pubbl/distr/stampa New York, : AMACOM/American Management Association, c2002
Descrizione fisica xxxvi, 404 p. : ill
Disciplina 658.5/62
Soggetto topico Process control
ISBN 1-61583-984-4
0-8144-2641-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- CONTENTS -- LIST OF ILLUSTRATIONS -- FOREWORD BY ROBERT W. GALVIN, CHAIRMAN OF THE BOARD EMERITUS, MOTOROLA -- PREFACE: BLOSSOMING OF THE ULTI MATE SIX SIGMA -- ACKNOWLEDGMENTS -- PART 1 DEFINITIONS AND CONCEPTS -- O n e WHAT IS SIX SIGMA? -- T wo THE NEED, OBJECTIVES, AND BENEFITS OF THE ULTI MATE SIX SIGMA -- T h r e e THE ORIGIN, DEVELOPMENT, AND RENEWAL OF MOTOROLA' S SIX SIGMA -- F o u r THE HYPED SIX SIGMA: FROM THE PURE SIX SIGMA TO THE SICK SIGMA -- F i v e THE SCOPE, STRUCTURE, AND METHODOLOGY OF THE ULTI MATE SIX SIGMA -- PART 2 THE ULTI MATE SIX SIGMA- TWELVE AREAS OF BUSINESS EXCELLENCE -- S i x FROM MERE CUSTOMER SATISFACTION TO CUSTOMER LOYALTY -- S e v e n FROM STIFLING MICROMANAGEMENT TO INSPIRATIONAL LEADERSHIP -- E i g h t FROM TAYLORISM TO EMPOWERMENT CREATION IN THE ORGANIZATION -- N i n e FROM PASSIVITY AND BOREDOM AMONG EMPLOYEES TO INDUSTRIAL DEMOCRACY -- T en FROM TRADITIONAL INDICATORS TO ROBUST METRICS -- E l e v e n FROM OBSOLETE TOOLS OF THE TWENTIETH CENTURY TO THE POWERFUL TOOLS OF THE TWENTY- FIRST CENTURY -- T welve FROM HISTORIC LEVELS TO DESIGNS IN HALF THE TIME WITH HALF THE DEFECTS, HALF THE COSTS, AND HALF THE MANPOWER -- T h i r t e e n FROM A CUSTOMER-SUPPLIER WIN- LOSE CONTEST TO A WIN-WIN PARTNERSHIP FOR THE ENTIRE SUPPLIER CHAIN -- F o u r t e e n FROM SECOND-CLASS CITIZEN TO MANUFACTURING AS A MAJOR CONTRIBUTOR TO BUSINESS EXCELLENCE -- F i f t e e n FIELD OPERATIONS: FROM AN APPENDAGE TO A MAXIMUM SERVICE TO DOWNSTREAM STAKEHOLDERS -- S i x t e e n FROM THE BLACK HOLE OF LITTLE ACCOUNTABILITY TO SERVICE AS A PRODUCTIVITY CONTRIBUTOR -- S e v e n t e e n FROM MEDIOCRITY TO WORLD- CLASS RESULTS -- REFERENCE NOTES -- INDEX.
Record Nr. UNINA-9910823054203321
Bhote Keki R. <1925->  
New York, : AMACOM/American Management Association, c2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vom Hydraulischen Regler zum Prozessleitsystem [[electronic resource] ] : die Erfolgsgeschichte der Askania-Werke Berlin und der Geräte- und Reglerwerke Teltow : 140 Jahre Industriegeschichte, Tradition und Zukunft / / Lothar Starke
Vom Hydraulischen Regler zum Prozessleitsystem [[electronic resource] ] : die Erfolgsgeschichte der Askania-Werke Berlin und der Geräte- und Reglerwerke Teltow : 140 Jahre Industriegeschichte, Tradition und Zukunft / / Lothar Starke
Autore Starke Lothar
Pubbl/distr/stampa Berlin, : BWV, Berliner Wissenschafts-Verlag, 2009
Descrizione fisica 1 online resource (274 p.)
Soggetto topico Hydraulic control - Germany
Process control
Soggetto non controllato Mechanical engineering; - mechanical instruments; - German engineering firm
ISBN 3-8305-1715-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910164189203321
Starke Lothar  
Berlin, : BWV, Berliner Wissenschafts-Verlag, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui