top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Ion acceleration and extreme light field generation based on ultra-short and ultra–intense lasers [[electronic resource] /] / by Liangliang Ji
Ion acceleration and extreme light field generation based on ultra-short and ultra–intense lasers [[electronic resource] /] / by Liangliang Ji
Autore Ji Liangliang
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (93 p.)
Disciplina 539.73
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Atoms
Physics
Particle acceleration
Lasers
Photonics
Plasma (Ionized gases)
Atoms and Molecules in Strong Fields, Laser Matter Interaction
Particle Acceleration and Detection, Beam Physics
Optics, Lasers, Photonics, Optical Devices
Plasma Physics
ISBN 3-642-54007-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Ion acceleration I: Efficient heavy ion acceleration by ESA.- Ion acceleration II: The critical target thickness in light sail acceleration -- Extreme light field generation I: Quasi-single-cycle relativistic laser pulse -- Extreme light field generation II: Short-wavelength single-cycle ultra-intense laser pulse -- Extreme light field generation III: Ultra-intense isolated attosecond pulse -- Summary.
Record Nr. UNINA-9910300383503321
Ji Liangliang  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lepton and photon interactions at high energies : proceedings of the 1983 international symposium on leptons and photon interactions at high energies August 4-9, 1983 / editors David G. Cassel, David K. Kreinick
Lepton and photon interactions at high energies : proceedings of the 1983 international symposium on leptons and photon interactions at high energies August 4-9, 1983 / editors David G. Cassel, David K. Kreinick
Autore International symposium on lepton and photon interactions at high energies : <11. ; : 1983
Pubbl/distr/stampa Ithaca : Cornell University, 1983
Descrizione fisica xiii, 946 p. : ill. ; 26 cm
Disciplina 539.72
539.73
Soggetto non controllato Particelle elementari
Raggi cosmici
Acceleratori
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990001048430403321
International symposium on lepton and photon interactions at high energies : <11. ; : 1983  
Ithaca : Cornell University, 1983
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration [[electronic resource] /] / by Matthew. J Cliffe
Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration [[electronic resource] /] / by Matthew. J Cliffe
Autore Cliffe Matthew. J
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XIII, 150 p. 86 illus., 67 illus. in color.)
Disciplina 539.73
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Particle acceleration
Physics
Particle Acceleration and Detection, Beam Physics
Applied and Technical Physics
ISBN 3-319-48643-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Literature Review -- Background Theory -- Experimental Apparatus -- Radiation Propagation Simulation -- ALICE Energy Modulation Induced by Terahertz Reaction (AEMITR) -- Generation of Longitudinally Polarised Terahertz Radiation with a Photoconductive Antenna -- Generation of Longitudinally Polarised Terahertz Radiation in Non-Linear Optical Crystals -- Conclusions and Future Work.
Record Nr. UNINA-9910159386903321
Cliffe Matthew. J  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low-level radio frequency systems / / Stefan Simrock and Zheqiao Geng
Low-level radio frequency systems / / Stefan Simrock and Zheqiao Geng
Autore Simrock Stefan
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (396 pages)
Disciplina 539.73
Collana Particle Acceleration and Detection
Soggetto topico Particle accelerators - Experiments
Radio frequency
ISBN 3-030-94419-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Abbreviations -- Chapter 1: Introduction -- 1.1 RF Systems of Particle Accelerators -- 1.2 Principles of Beam Acceleration -- 1.2.1 Acceleration in Standing-Wave Cavities -- 1.2.2 Acceleration in Traveling-Wave Structures -- 1.3 Disturbances to RF Fields -- 1.3.1 Electronic Noise -- 1.3.2 Temperature and Humidity -- 1.3.3 Mechanical Vibrations -- 1.3.4 Beam Loading -- 1.4 LLRF Systems Overview -- 1.4.1 Requirements and Architecture -- 1.4.2 Context in Particle Accelerators -- 1.4.3 A Brief History -- 1.5 Summary -- References -- Chapter 2: RF Control Strategy -- 2.1 Feedback and Feedforward Control -- 2.2 Amplitude/Phase and In-Phase/Quadrature Control -- 2.3 RF Control Loop Architecture -- 2.3.1 Generator Driven Resonator -- 2.3.2 Self-Excited Loop -- 2.3.3 Phase-Locked Loop -- 2.4 Analog and Digital Control -- 2.5 Single-Cavity and Vector-Sum Control -- 2.6 Summary -- References -- Chapter 3: RF System Models -- 3.1 General Assumptions -- 3.2 RF Modeling Method -- 3.2.1 RF Signal Description -- 3.2.2 Principle of RF Signal Detection -- 3.2.3 Phasor Laplace Transform -- 3.3 Single-Cell Cavity Model -- 3.3.1 Parallel RLC Circuit Model -- 3.3.2 Cavity Phasor Transfer Function -- 3.3.3 Cavity Step Response -- 3.3.4 Cavity Response to RF Power -- 3.3.5 Cavity Response to a Single Bunch -- 3.3.6 Cavity Response to a Bunch Train -- 3.3.7 Cavity Equation with Voltage Drives -- 3.3.8 Interaction Between Cavity Voltage and Beam -- 3.3.9 Forward and Reflected RF Power -- 3.3.10 Mechanical Model -- 3.4 Multi-cell Cavity Model -- 3.4.1 Coupled RLC Circuit Model -- 3.4.2 Multi-cell Cavity Phasor Equations -- 3.4.3 Passband Modes -- 3.4.4 Transient in Cavity Cells with RF Drive -- 3.5 Traveling-Wave Structure Model -- 3.5.1 Filling of Structures -- 3.5.2 Structure Phasor Transfer Function -- 3.6 Modeling of Important RF Devices.
3.6.1 Transmission Line Model -- 3.6.2 RF Amplifier Model -- 3.6.3 RF Pulse Compressor Model -- 3.7 Application of RF System Models -- 3.8 Summary -- References -- Chapter 4: RF Field Control -- 4.1 Requirements to RF Field Control -- 4.2 Generator Driven Resonator Control -- 4.2.1 Feedback Stability for Single-Cell Cavities -- 4.2.2 Feedback Stability for Multi-cell Cavities -- 4.2.3 Active Disturbance Rejection Control -- 4.2.4 Advanced Control Algorithms -- 4.2.4.1 Optimal Control -- 4.2.4.2 Robust Control and Adaptive Control -- 4.2.4.3 Model Predictive Control -- 4.3 Self-Excited Loop Control -- 4.3.1 Free-Running SEL -- 4.3.2 SEL with Amplitude Limiter -- 4.3.3 SEL with Feedback Control -- 4.4 Phase-Locked Loop Control -- 4.4.1 Introduction to PLL -- 4.4.2 Modeling of PLL for Cavity Control -- 4.4.3 Feedback Analysis of PLL -- 4.4.3.1 Control Goals Analysis -- 4.4.3.2 Controllability Analysis -- 4.5 Adaptive Feedforward -- 4.5.1 Adapt Feedforward with Feedback Actuation -- 4.5.2 Iterative Learning Control -- 4.5.2.1 FIR Model of RF System -- 4.5.2.2 ILC Algorithm -- 4.6 Cavity Resonance Control -- 4.6.1 Detuning Measurement -- 4.6.1.1 RF Frequency Scanning -- 4.6.1.2 Phase Slope at RF Pulse Decay -- 4.6.1.3 Solving Cavity Equation -- 4.6.1.4 Cavity Input-Output Phase Shift -- 4.6.2 Cavity Tuners -- 4.6.2.1 Motor Tuner -- 4.6.2.2 Piezo Tuner -- 4.6.2.3 Cooling Water Temperature -- 4.6.3 Tuning Control Scheme -- 4.6.3.1 Tuning Control with Feedback -- Coupling with Phase Feedback Loop -- Issues of Feedback with Piezo Tuners -- 4.6.3.2 Tuning Control with Adaptive Noise Cancellation -- 4.6.3.3 Feedforward Control for Pulsed Cavities -- 4.6.4 Ponderomotive Effects -- 4.6.4.1 Introduction to Ponderomotive Instability -- 4.6.4.2 Static Instability Analysis -- 4.6.4.3 Mitigation of Ponderomotive Instability -- 4.7 Summary -- References.
Chapter 5: RF Detection and Actuation -- 5.1 RF Detection Schemes -- 5.1.1 Amplitude and Phase Detectors -- 5.1.2 Analog I/Q Demodulator -- 5.1.3 Down-Converter and IF Sampling -- 5.1.4 Direct RF Sampling -- 5.2 RF Detection Algorithms -- 5.2.1 I/Q Demodulation -- 5.2.1.1 I/Q Sampling and Demodulation Algorithm -- 5.2.1.2 Harmonics Aliasing of I/Q Sampling -- 5.2.2 Non-I/Q Demodulation -- 5.2.2.1 Non-I/Q Sampling -- 5.2.2.2 Harmonics Aliasing of Non-I/Q Sampling -- 5.2.2.3 Non-I/Q Demodulation Algorithm -- 5.2.2.4 Frequency Response of Non-I/Q Demodulation -- 5.2.2.5 Non-I/Q Demodulation for Transient RF Measurement -- 5.2.3 Digital Down-Conversion -- 5.2.4 Handling of Time-varying Frequency -- 5.2.5 RF Detection with Reference Tracking -- 5.2.5.1 Reference Tracking with PLL -- 5.2.5.2 Reference Tracking with Hilbert Transform -- 5.2.5.3 Direct Reference Phase Tracking -- 5.3 RF Actuation Schemes -- 5.3.1 Direct Up-Conversion -- 5.3.2 Single Sideband Up-Conversion -- 5.3.3 IF Up-Conversion -- 5.4 Summary -- References -- Chapter 6: Noise in RF Systems -- 6.1 General Description of Noise -- 6.1.1 Basic Concepts of Noise -- 6.1.2 Estimation of PSD and SNR -- 6.1.2.1 Discrete Fourier Transform -- 6.1.2.2 PSD and SNR Calculation -- 6.1.3 Correlation of Noise -- 6.1.3.1 Description of Correlation -- 6.1.3.2 PSD of the Sum of Two Noises -- 6.1.4 Additive Noise and Parametric Noise -- 6.1.5 White Noise and 1/f Noise -- 6.1.6 Noise Factor -- 6.1.7 Phase Noise and Amplitude Noise -- 6.1.7.1 Phase Noise -- 6.1.7.2 Amplitude Noise -- 6.1.7.3 Signal with Amplitude and Phase Noise -- 6.1.8 Additive Noise and RF Jitter -- 6.1.9 Frequency-Domain Meaning of RMS Value -- 6.1.10 Drift and Jitter -- 6.2 Noise Model of Basic RF Components -- 6.2.1 Two-Port Passive RF Components -- 6.2.2 Power Splitter and Combiner -- 6.2.3 RF Amplifier -- 6.2.4 Mixer.
6.2.5 Frequency Divider and Multiplier -- 6.2.6 Analog-to-Digital Converter -- 6.2.6.1 ADC Noise Model -- 6.2.6.2 Noise Added by ADC -- 6.2.6.3 Measurement of Noise Added by ADC -- 6.2.7 Digital-to-Analog Converter -- 6.2.7.1 DAC Noise Model -- 6.2.7.2 Noise Added by DAC -- 6.3 Noise Transfer in RF Control Loops -- 6.3.1 Noise Transfer in Feedback Control -- 6.3.2 Noise Transfer in Pulse-to-Pulse Control -- 6.4 RF System Noise Specification -- 6.4.1 Noise Specification Strategy -- 6.4.2 Accelerator Global Noise Model -- 6.4.2.1 Noise Specification of Linacs -- 6.4.2.2 Noise Specification of Synchrotrons -- 6.4.3 Specification of RF Reference Phase Noise -- 6.5 RF Station Noise Model -- 6.5.1 RF Station Noise Overview -- 6.5.2 RF Reference Phase Noise -- 6.5.3 RF Driving Chain Noise -- 6.5.4 RF Measurement Chain Noise -- 6.5.5 Estimation of RF Measurement Chain Noise -- 6.5.6 Estimation of RF Driving Chain Noise -- 6.5.7 Estimation of RF Field Noise -- 6.5.8 Validation of RF Station Noise Model -- 6.5.9 Specification of RF Component Noise -- 6.6 RF Detector Drift Correction -- 6.6.1 Reference Tracking -- 6.6.2 Drift Calibration -- 6.6.3 Beam-Based Feedback -- 6.7 Summary -- References -- Chapter 7: Nonlinearity in RF Systems -- 7.1 Basic Concepts -- 7.1.1 1-dB Compression Point -- 7.1.2 Third-Order Intercept Point -- 7.1.3 AM-PM Conversion -- 7.1.4 Nonlinearity Induced RF Detection Error -- 7.1.5 Nonlinearity Induced RF Driving Disturbances -- 7.2 Nonlinearity of RF Amplifiers -- 7.2.1 Look-Up Table Model -- 7.2.2 Analytical Model -- 7.2.3 Dynamical Model -- 7.3 Handling of Amplifier Nonlinearity in RF Control -- 7.3.1 RF Amplitude Control with High Voltage -- 7.3.2 Gain Scheduling -- 7.3.3 LUT-Based Linearization -- 7.3.4 Linearization Loop -- 7.4 Summary -- References -- Chapter 8: Timing and Synchronization -- 8.1 Overview -- 8.2 Master Oscillator.
8.2.1 RF and Laser Oscillator -- 8.2.2 Synchronization of Two Oscillators -- 8.3 Timing System -- 8.3.1 Timing Fiducial Generation -- 8.3.2 Common Subharmonic -- 8.3.3 Client Trigger Generation -- 8.4 Synchronization System -- 8.4.1 Synchronization Signal Distribution -- 8.4.2 Phase Drift Mitigation -- 8.4.2.1 Phase-Stable Coaxial Cable -- 8.4.2.2 Temperature and Humidity Stabilization -- 8.4.2.3 Active Drift Compensation -- 8.4.2.4 Phase-Averaging Coaxial Line -- 8.4.3 Client Synchronization -- 8.4.3.1 RF Signal Extraction -- 8.4.3.2 Frequency Synthesis -- 8.4.3.3 Synchronization of Laser Oscillator -- 8.5 Robust Timing Relations -- 8.5.1 Timing Relation Highlight -- 8.5.2 Timing Relation Uncertainty -- 8.5.3 Strategies for Robust Timing Relations -- 8.5.3.1 Frequency Selection -- 8.5.3.2 Timing Relation Diagnostics -- 8.5.3.3 Reference Tracking -- 8.5.3.4 Frequency Divider Resynchronization -- 8.5.3.5 Race Condition Handling -- 8.6 Summary -- References -- Chapter 9: LLRF Applications -- 9.1 Overview -- 9.2 Parameter Optimization -- 9.2.1 RF Pulse Shaping -- 9.2.2 DAC Offset Correction -- 9.2.3 Parameter Scanning -- 9.3 RF Calibration -- 9.3.1 Beam-Induced Transient -- 9.3.1.1 Physical Meaning of Beam-Induced Transient -- 9.3.1.2 Measurement of Beam-Induced Transient -- 9.3.2 Accelerating Voltage and Beam Phase Calibration -- 9.3.2.1 Accelerating Voltage Calibration with RF Drive Power -- 9.3.2.2 Accelerating Voltage and Beam Phase Calibration with Beam-Induced Transient -- 9.3.2.3 Accelerating Voltage and Beam Phase Calibration with Beam Energy -- 9.3.3 Cavity Input Power and Phase Adjustment -- 9.3.4 Vector-Sum Calibration -- 9.3.4.1 Vector-Sum Calibration Algorithm -- 9.3.4.2 Vector-Sum Calibration Error -- 9.3.5 Cavity Forward and Reflected Signals Calibration -- 9.3.6 RF Signal Power Calibration -- 9.4 RF System Identification.
9.4.1 Cavity Input Coupling Factor Identification.
Record Nr. UNISA-996466841503316
Simrock Stefan  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Low-level radio frequency systems / / Stefan Simrock and Zheqiao Geng
Low-level radio frequency systems / / Stefan Simrock and Zheqiao Geng
Autore Simrock Stefan
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (396 pages)
Disciplina 539.73
Collana Particle Acceleration and Detection
Soggetto topico Particle accelerators - Experiments
Radio frequency
ISBN 3-030-94419-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Abbreviations -- Chapter 1: Introduction -- 1.1 RF Systems of Particle Accelerators -- 1.2 Principles of Beam Acceleration -- 1.2.1 Acceleration in Standing-Wave Cavities -- 1.2.2 Acceleration in Traveling-Wave Structures -- 1.3 Disturbances to RF Fields -- 1.3.1 Electronic Noise -- 1.3.2 Temperature and Humidity -- 1.3.3 Mechanical Vibrations -- 1.3.4 Beam Loading -- 1.4 LLRF Systems Overview -- 1.4.1 Requirements and Architecture -- 1.4.2 Context in Particle Accelerators -- 1.4.3 A Brief History -- 1.5 Summary -- References -- Chapter 2: RF Control Strategy -- 2.1 Feedback and Feedforward Control -- 2.2 Amplitude/Phase and In-Phase/Quadrature Control -- 2.3 RF Control Loop Architecture -- 2.3.1 Generator Driven Resonator -- 2.3.2 Self-Excited Loop -- 2.3.3 Phase-Locked Loop -- 2.4 Analog and Digital Control -- 2.5 Single-Cavity and Vector-Sum Control -- 2.6 Summary -- References -- Chapter 3: RF System Models -- 3.1 General Assumptions -- 3.2 RF Modeling Method -- 3.2.1 RF Signal Description -- 3.2.2 Principle of RF Signal Detection -- 3.2.3 Phasor Laplace Transform -- 3.3 Single-Cell Cavity Model -- 3.3.1 Parallel RLC Circuit Model -- 3.3.2 Cavity Phasor Transfer Function -- 3.3.3 Cavity Step Response -- 3.3.4 Cavity Response to RF Power -- 3.3.5 Cavity Response to a Single Bunch -- 3.3.6 Cavity Response to a Bunch Train -- 3.3.7 Cavity Equation with Voltage Drives -- 3.3.8 Interaction Between Cavity Voltage and Beam -- 3.3.9 Forward and Reflected RF Power -- 3.3.10 Mechanical Model -- 3.4 Multi-cell Cavity Model -- 3.4.1 Coupled RLC Circuit Model -- 3.4.2 Multi-cell Cavity Phasor Equations -- 3.4.3 Passband Modes -- 3.4.4 Transient in Cavity Cells with RF Drive -- 3.5 Traveling-Wave Structure Model -- 3.5.1 Filling of Structures -- 3.5.2 Structure Phasor Transfer Function -- 3.6 Modeling of Important RF Devices.
3.6.1 Transmission Line Model -- 3.6.2 RF Amplifier Model -- 3.6.3 RF Pulse Compressor Model -- 3.7 Application of RF System Models -- 3.8 Summary -- References -- Chapter 4: RF Field Control -- 4.1 Requirements to RF Field Control -- 4.2 Generator Driven Resonator Control -- 4.2.1 Feedback Stability for Single-Cell Cavities -- 4.2.2 Feedback Stability for Multi-cell Cavities -- 4.2.3 Active Disturbance Rejection Control -- 4.2.4 Advanced Control Algorithms -- 4.2.4.1 Optimal Control -- 4.2.4.2 Robust Control and Adaptive Control -- 4.2.4.3 Model Predictive Control -- 4.3 Self-Excited Loop Control -- 4.3.1 Free-Running SEL -- 4.3.2 SEL with Amplitude Limiter -- 4.3.3 SEL with Feedback Control -- 4.4 Phase-Locked Loop Control -- 4.4.1 Introduction to PLL -- 4.4.2 Modeling of PLL for Cavity Control -- 4.4.3 Feedback Analysis of PLL -- 4.4.3.1 Control Goals Analysis -- 4.4.3.2 Controllability Analysis -- 4.5 Adaptive Feedforward -- 4.5.1 Adapt Feedforward with Feedback Actuation -- 4.5.2 Iterative Learning Control -- 4.5.2.1 FIR Model of RF System -- 4.5.2.2 ILC Algorithm -- 4.6 Cavity Resonance Control -- 4.6.1 Detuning Measurement -- 4.6.1.1 RF Frequency Scanning -- 4.6.1.2 Phase Slope at RF Pulse Decay -- 4.6.1.3 Solving Cavity Equation -- 4.6.1.4 Cavity Input-Output Phase Shift -- 4.6.2 Cavity Tuners -- 4.6.2.1 Motor Tuner -- 4.6.2.2 Piezo Tuner -- 4.6.2.3 Cooling Water Temperature -- 4.6.3 Tuning Control Scheme -- 4.6.3.1 Tuning Control with Feedback -- Coupling with Phase Feedback Loop -- Issues of Feedback with Piezo Tuners -- 4.6.3.2 Tuning Control with Adaptive Noise Cancellation -- 4.6.3.3 Feedforward Control for Pulsed Cavities -- 4.6.4 Ponderomotive Effects -- 4.6.4.1 Introduction to Ponderomotive Instability -- 4.6.4.2 Static Instability Analysis -- 4.6.4.3 Mitigation of Ponderomotive Instability -- 4.7 Summary -- References.
Chapter 5: RF Detection and Actuation -- 5.1 RF Detection Schemes -- 5.1.1 Amplitude and Phase Detectors -- 5.1.2 Analog I/Q Demodulator -- 5.1.3 Down-Converter and IF Sampling -- 5.1.4 Direct RF Sampling -- 5.2 RF Detection Algorithms -- 5.2.1 I/Q Demodulation -- 5.2.1.1 I/Q Sampling and Demodulation Algorithm -- 5.2.1.2 Harmonics Aliasing of I/Q Sampling -- 5.2.2 Non-I/Q Demodulation -- 5.2.2.1 Non-I/Q Sampling -- 5.2.2.2 Harmonics Aliasing of Non-I/Q Sampling -- 5.2.2.3 Non-I/Q Demodulation Algorithm -- 5.2.2.4 Frequency Response of Non-I/Q Demodulation -- 5.2.2.5 Non-I/Q Demodulation for Transient RF Measurement -- 5.2.3 Digital Down-Conversion -- 5.2.4 Handling of Time-varying Frequency -- 5.2.5 RF Detection with Reference Tracking -- 5.2.5.1 Reference Tracking with PLL -- 5.2.5.2 Reference Tracking with Hilbert Transform -- 5.2.5.3 Direct Reference Phase Tracking -- 5.3 RF Actuation Schemes -- 5.3.1 Direct Up-Conversion -- 5.3.2 Single Sideband Up-Conversion -- 5.3.3 IF Up-Conversion -- 5.4 Summary -- References -- Chapter 6: Noise in RF Systems -- 6.1 General Description of Noise -- 6.1.1 Basic Concepts of Noise -- 6.1.2 Estimation of PSD and SNR -- 6.1.2.1 Discrete Fourier Transform -- 6.1.2.2 PSD and SNR Calculation -- 6.1.3 Correlation of Noise -- 6.1.3.1 Description of Correlation -- 6.1.3.2 PSD of the Sum of Two Noises -- 6.1.4 Additive Noise and Parametric Noise -- 6.1.5 White Noise and 1/f Noise -- 6.1.6 Noise Factor -- 6.1.7 Phase Noise and Amplitude Noise -- 6.1.7.1 Phase Noise -- 6.1.7.2 Amplitude Noise -- 6.1.7.3 Signal with Amplitude and Phase Noise -- 6.1.8 Additive Noise and RF Jitter -- 6.1.9 Frequency-Domain Meaning of RMS Value -- 6.1.10 Drift and Jitter -- 6.2 Noise Model of Basic RF Components -- 6.2.1 Two-Port Passive RF Components -- 6.2.2 Power Splitter and Combiner -- 6.2.3 RF Amplifier -- 6.2.4 Mixer.
6.2.5 Frequency Divider and Multiplier -- 6.2.6 Analog-to-Digital Converter -- 6.2.6.1 ADC Noise Model -- 6.2.6.2 Noise Added by ADC -- 6.2.6.3 Measurement of Noise Added by ADC -- 6.2.7 Digital-to-Analog Converter -- 6.2.7.1 DAC Noise Model -- 6.2.7.2 Noise Added by DAC -- 6.3 Noise Transfer in RF Control Loops -- 6.3.1 Noise Transfer in Feedback Control -- 6.3.2 Noise Transfer in Pulse-to-Pulse Control -- 6.4 RF System Noise Specification -- 6.4.1 Noise Specification Strategy -- 6.4.2 Accelerator Global Noise Model -- 6.4.2.1 Noise Specification of Linacs -- 6.4.2.2 Noise Specification of Synchrotrons -- 6.4.3 Specification of RF Reference Phase Noise -- 6.5 RF Station Noise Model -- 6.5.1 RF Station Noise Overview -- 6.5.2 RF Reference Phase Noise -- 6.5.3 RF Driving Chain Noise -- 6.5.4 RF Measurement Chain Noise -- 6.5.5 Estimation of RF Measurement Chain Noise -- 6.5.6 Estimation of RF Driving Chain Noise -- 6.5.7 Estimation of RF Field Noise -- 6.5.8 Validation of RF Station Noise Model -- 6.5.9 Specification of RF Component Noise -- 6.6 RF Detector Drift Correction -- 6.6.1 Reference Tracking -- 6.6.2 Drift Calibration -- 6.6.3 Beam-Based Feedback -- 6.7 Summary -- References -- Chapter 7: Nonlinearity in RF Systems -- 7.1 Basic Concepts -- 7.1.1 1-dB Compression Point -- 7.1.2 Third-Order Intercept Point -- 7.1.3 AM-PM Conversion -- 7.1.4 Nonlinearity Induced RF Detection Error -- 7.1.5 Nonlinearity Induced RF Driving Disturbances -- 7.2 Nonlinearity of RF Amplifiers -- 7.2.1 Look-Up Table Model -- 7.2.2 Analytical Model -- 7.2.3 Dynamical Model -- 7.3 Handling of Amplifier Nonlinearity in RF Control -- 7.3.1 RF Amplitude Control with High Voltage -- 7.3.2 Gain Scheduling -- 7.3.3 LUT-Based Linearization -- 7.3.4 Linearization Loop -- 7.4 Summary -- References -- Chapter 8: Timing and Synchronization -- 8.1 Overview -- 8.2 Master Oscillator.
8.2.1 RF and Laser Oscillator -- 8.2.2 Synchronization of Two Oscillators -- 8.3 Timing System -- 8.3.1 Timing Fiducial Generation -- 8.3.2 Common Subharmonic -- 8.3.3 Client Trigger Generation -- 8.4 Synchronization System -- 8.4.1 Synchronization Signal Distribution -- 8.4.2 Phase Drift Mitigation -- 8.4.2.1 Phase-Stable Coaxial Cable -- 8.4.2.2 Temperature and Humidity Stabilization -- 8.4.2.3 Active Drift Compensation -- 8.4.2.4 Phase-Averaging Coaxial Line -- 8.4.3 Client Synchronization -- 8.4.3.1 RF Signal Extraction -- 8.4.3.2 Frequency Synthesis -- 8.4.3.3 Synchronization of Laser Oscillator -- 8.5 Robust Timing Relations -- 8.5.1 Timing Relation Highlight -- 8.5.2 Timing Relation Uncertainty -- 8.5.3 Strategies for Robust Timing Relations -- 8.5.3.1 Frequency Selection -- 8.5.3.2 Timing Relation Diagnostics -- 8.5.3.3 Reference Tracking -- 8.5.3.4 Frequency Divider Resynchronization -- 8.5.3.5 Race Condition Handling -- 8.6 Summary -- References -- Chapter 9: LLRF Applications -- 9.1 Overview -- 9.2 Parameter Optimization -- 9.2.1 RF Pulse Shaping -- 9.2.2 DAC Offset Correction -- 9.2.3 Parameter Scanning -- 9.3 RF Calibration -- 9.3.1 Beam-Induced Transient -- 9.3.1.1 Physical Meaning of Beam-Induced Transient -- 9.3.1.2 Measurement of Beam-Induced Transient -- 9.3.2 Accelerating Voltage and Beam Phase Calibration -- 9.3.2.1 Accelerating Voltage Calibration with RF Drive Power -- 9.3.2.2 Accelerating Voltage and Beam Phase Calibration with Beam-Induced Transient -- 9.3.2.3 Accelerating Voltage and Beam Phase Calibration with Beam Energy -- 9.3.3 Cavity Input Power and Phase Adjustment -- 9.3.4 Vector-Sum Calibration -- 9.3.4.1 Vector-Sum Calibration Algorithm -- 9.3.4.2 Vector-Sum Calibration Error -- 9.3.5 Cavity Forward and Reflected Signals Calibration -- 9.3.6 RF Signal Power Calibration -- 9.4 RF System Identification.
9.4.1 Cavity Input Coupling Factor Identification.
Record Nr. UNINA-9910551839703321
Simrock Stefan  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Measurement and Control of Charged Particle Beams [[electronic resource] /] / by Michiko G. Minty, Frank Zimmermann
Measurement and Control of Charged Particle Beams [[electronic resource] /] / by Michiko G. Minty, Frank Zimmermann
Autore Minty Michiko G
Edizione [1st ed. 2003.]
Pubbl/distr/stampa Springer Nature, 2003
Descrizione fisica 1 online resource (XX, 364 p.)
Disciplina 539.73
Collana Particle Acceleration and Detection
Soggetto topico Particle acceleration
Physical measurements
Measurement   
Particle Acceleration and Detection, Beam Physics
Measurement Science and Instrumentation
Soggetto non controllato Particle Acceleration and Detection, Beam Physics
Measurement Science and Instrumentation
Accelerator Physics
CERN
DESY
Particle accelerator
Storage ring
control
measurement
Open Access
Particle & high-energy physics
Scientific standards, measurement etc
ISBN 3-662-08581-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Transverse Optics Measurement and Correction -- 3 Orbit Measurement and Correction -- 4 Transverse Beam Emittance Measurement and Control -- 5 Beam Manipulations in Photoinjectors -- 6 Collimation -- 7 Longitudinal Optics Measurement and Correction -- 8 Longitudinal Phase Space Manipulation -- 9 Injection and Extraction -- 10 Polarization Issues -- 11 Cooling -- 12 Solutions to Exercises -- References.
Record Nr. UNINA-9910353343503321
Minty Michiko G  
Springer Nature, 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Pubbl/distr/stampa Singapore, : World Scientific, 2009
Descrizione fisica 1 online resource (320 p.)
Disciplina 539.73
Altri autori (Persone) ChaoAlex
ChouWeiren
Collana Reviews of accelerator science and technology
Soggetto topico Particle accelerators
Soggetto genere / forma Electronic books.
ISBN 1-282-76360-1
9786612763601
981-4299-35-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Editorial Preface; Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data Herman Suit, Thomas F. Delaney and Alexei Trofimov; 1. Introduction; 2. Physics; 2.1. General considerations; 2.2. Need for gantries; 2.3. Penumbra; 2.4. Heterodensities in the beam path a narrow age range. The tumor(s) would be transplanted; 3. Radiation-Biological Considerations; 3.1. Slopes of dose-response curves; 3.2. LET and RBE; 3.3. RBE and dose; 3.4. OER; 4. Clinical Outcome Data; 4.1. Chordoma; 4.2. Chondrosarcoma; 4.3. Uveal melanoma; 4.4. Head and neck
4.5. Non-small-cell lung carcinoma4.6. Hepatocellular carcinoma; 4.7. Prostate carcinoma; 5. Discussion; Acknowledgments; References; The Production of Radionuclides for Radiotracers in Nuclear Medicine Thomas J. Ruth; 1. Introduction; 2. Radioisotope/Radionuclide Production; 2.1. Specific activity [1, 2]; 3. Accelerators; 3.1. Development of the linac; 3.1.1. Principles of operation; 3.1.2. Radio frequency acceleration; 3.1.3. Current linacs; 3.2. Development of the cyclotron; 3.2.1. Principles of cyclotron operation; 3.2.2. Energies and particles; 3.3. Choice of an accelerator
3.3.1. Comparison between cyclotrons and other accelerators [1]4. Medical Applications; 4.1. Historical background [2]; 4.2. Radionuclides for imaging; 4.3. Radionuclides for therapy; 4.4. Radioisotope production rates and yield considerations; 4.5. Generators; 5. Imaging; 5.1. Planar imaging; 5.2. Single photon emission computed tomography; 5.3. Positron emission tomography; 6. Functional Imaging; 7. Radiotracer and Chemistry Development; 7.1. Radiopharmaceuticals; 8. Future Directions; References
Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility James M. Slater, Jerry D. Slater and Andrew J. Wroe1. Introduction; 2. Preparation Phase; 3. Developmental Phase; 3.1. Accelerator performance and maintenance; 4. Clinical Operations; 4.1. The central nervous system and the base of the skull (in adults): stereotactic radiosurgery; 4.2. Fractionated proton therapy for tumors of the central nervous system; 4.3. Diseases of the eye and tumors of the head and neck; 4.4. Lung, breast, and liver cancer
4.5. Cancer of the prostate4.6. Pediatric neoplasms; 4.7. Perspective; 5. Research Activities; 5.1. Research strategies; 5.1.1. Basic physics; 5.1.2. Modifying results of proton irradiation; 5.1.3. Engineering advances; 5.1.4. Protons for non-malignant diseases; 5.1.5. Space-science investigations; 5.2. Future directions; 6. Summary; References; Microwave Electron Linacs for Oncology David H. Whittum; 1. Introduction; 1.1. Why is an accelerator structure needed?; 1.2. How does an accelerator structure work?; 1.3. Circuit-equivalent model for a standing wave accelerator; 1.4. Cold test
1.5. Multicell accelerator structures
Record Nr. UNINA-9910456158803321
Singapore, : World Scientific, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Pubbl/distr/stampa Singapore, : World Scientific, 2009
Descrizione fisica 1 online resource (320 p.)
Disciplina 539.73
Altri autori (Persone) ChaoAlex
ChouWeiren
Collana Reviews of accelerator science and technology
Soggetto topico Particle accelerators
ISBN 9789814299350 (eBook)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Editorial Preface; Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data Herman Suit, Thomas F. Delaney and Alexei Trofimov; 1. Introduction; 2. Physics; 2.1. General considerations; 2.2. Need for gantries; 2.3. Penumbra; 2.4. Heterodensities in the beam path a narrow age range. The tumor(s) would be transplanted; 3. Radiation-Biological Considerations; 3.1. Slopes of dose-response curves; 3.2. LET and RBE; 3.3. RBE and dose; 3.4. OER; 4. Clinical Outcome Data; 4.1. Chordoma; 4.2. Chondrosarcoma; 4.3. Uveal melanoma; 4.4. Head and neck
4.5. Non-small-cell lung carcinoma4.6. Hepatocellular carcinoma; 4.7. Prostate carcinoma; 5. Discussion; Acknowledgments; References; The Production of Radionuclides for Radiotracers in Nuclear Medicine Thomas J. Ruth; 1. Introduction; 2. Radioisotope/Radionuclide Production; 2.1. Specific activity [1, 2]; 3. Accelerators; 3.1. Development of the linac; 3.1.1. Principles of operation; 3.1.2. Radio frequency acceleration; 3.1.3. Current linacs; 3.2. Development of the cyclotron; 3.2.1. Principles of cyclotron operation; 3.2.2. Energies and particles; 3.3. Choice of an accelerator
3.3.1. Comparison between cyclotrons and other accelerators [1]4. Medical Applications; 4.1. Historical background [2]; 4.2. Radionuclides for imaging; 4.3. Radionuclides for therapy; 4.4. Radioisotope production rates and yield considerations; 4.5. Generators; 5. Imaging; 5.1. Planar imaging; 5.2. Single photon emission computed tomography; 5.3. Positron emission tomography; 6. Functional Imaging; 7. Radiotracer and Chemistry Development; 7.1. Radiopharmaceuticals; 8. Future Directions; References
Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility James M. Slater, Jerry D. Slater and Andrew J. Wroe1. Introduction; 2. Preparation Phase; 3. Developmental Phase; 3.1. Accelerator performance and maintenance; 4. Clinical Operations; 4.1. The central nervous system and the base of the skull (in adults): stereotactic radiosurgery; 4.2. Fractionated proton therapy for tumors of the central nervous system; 4.3. Diseases of the eye and tumors of the head and neck; 4.4. Lung, breast, and liver cancer
4.5. Cancer of the prostate4.6. Pediatric neoplasms; 4.7. Perspective; 5. Research Activities; 5.1. Research strategies; 5.1.1. Basic physics; 5.1.2. Modifying results of proton irradiation; 5.1.3. Engineering advances; 5.1.4. Protons for non-malignant diseases; 5.1.5. Space-science investigations; 5.2. Future directions; 6. Summary; References; Microwave Electron Linacs for Oncology David H. Whittum; 1. Introduction; 1.1. Why is an accelerator structure needed?; 1.2. How does an accelerator structure work?; 1.3. Circuit-equivalent model for a standing wave accelerator; 1.4. Cold test
1.5. Multicell accelerator structures
Record Nr. UNINA-9910780890603321
Singapore, : World Scientific, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Medical applications of accelerators [[electronic resource] /] / editors, Alexander W. Chao, Weiren Chou
Pubbl/distr/stampa Singapore, : World Scientific, 2009
Descrizione fisica 1 online resource (320 p.)
Disciplina 539.73
Altri autori (Persone) ChaoAlex
ChouWeiren
Collana Reviews of accelerator science and technology
Soggetto topico Particle accelerators
ISBN 9789814299350 (eBook)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Editorial Preface; Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data Herman Suit, Thomas F. Delaney and Alexei Trofimov; 1. Introduction; 2. Physics; 2.1. General considerations; 2.2. Need for gantries; 2.3. Penumbra; 2.4. Heterodensities in the beam path a narrow age range. The tumor(s) would be transplanted; 3. Radiation-Biological Considerations; 3.1. Slopes of dose-response curves; 3.2. LET and RBE; 3.3. RBE and dose; 3.4. OER; 4. Clinical Outcome Data; 4.1. Chordoma; 4.2. Chondrosarcoma; 4.3. Uveal melanoma; 4.4. Head and neck
4.5. Non-small-cell lung carcinoma4.6. Hepatocellular carcinoma; 4.7. Prostate carcinoma; 5. Discussion; Acknowledgments; References; The Production of Radionuclides for Radiotracers in Nuclear Medicine Thomas J. Ruth; 1. Introduction; 2. Radioisotope/Radionuclide Production; 2.1. Specific activity [1, 2]; 3. Accelerators; 3.1. Development of the linac; 3.1.1. Principles of operation; 3.1.2. Radio frequency acceleration; 3.1.3. Current linacs; 3.2. Development of the cyclotron; 3.2.1. Principles of cyclotron operation; 3.2.2. Energies and particles; 3.3. Choice of an accelerator
3.3.1. Comparison between cyclotrons and other accelerators [1]4. Medical Applications; 4.1. Historical background [2]; 4.2. Radionuclides for imaging; 4.3. Radionuclides for therapy; 4.4. Radioisotope production rates and yield considerations; 4.5. Generators; 5. Imaging; 5.1. Planar imaging; 5.2. Single photon emission computed tomography; 5.3. Positron emission tomography; 6. Functional Imaging; 7. Radiotracer and Chemistry Development; 7.1. Radiopharmaceuticals; 8. Future Directions; References
Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility James M. Slater, Jerry D. Slater and Andrew J. Wroe1. Introduction; 2. Preparation Phase; 3. Developmental Phase; 3.1. Accelerator performance and maintenance; 4. Clinical Operations; 4.1. The central nervous system and the base of the skull (in adults): stereotactic radiosurgery; 4.2. Fractionated proton therapy for tumors of the central nervous system; 4.3. Diseases of the eye and tumors of the head and neck; 4.4. Lung, breast, and liver cancer
4.5. Cancer of the prostate4.6. Pediatric neoplasms; 4.7. Perspective; 5. Research Activities; 5.1. Research strategies; 5.1.1. Basic physics; 5.1.2. Modifying results of proton irradiation; 5.1.3. Engineering advances; 5.1.4. Protons for non-malignant diseases; 5.1.5. Space-science investigations; 5.2. Future directions; 6. Summary; References; Microwave Electron Linacs for Oncology David H. Whittum; 1. Introduction; 1.1. Why is an accelerator structure needed?; 1.2. How does an accelerator structure work?; 1.3. Circuit-equivalent model for a standing wave accelerator; 1.4. Cold test
1.5. Multicell accelerator structures
Record Nr. UNINA-9910811311303321
Singapore, : World Scientific, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Methods of Detecting Exoplanets [[electronic resource] ] : 1st Advanced School on Exoplanetary Science / / edited by Valerio Bozza, Luigi Mancini, Alessandro Sozzetti
Methods of Detecting Exoplanets [[electronic resource] ] : 1st Advanced School on Exoplanetary Science / / edited by Valerio Bozza, Luigi Mancini, Alessandro Sozzetti
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (262 p.)
Disciplina 539.73
Collana Astrophysics and Space Science Library
Soggetto topico Space sciences
Particle acceleration
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
Particle Acceleration and Detection, Beam Physics
ISBN 3-319-27458-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1st Advanced School on Exoplanetary Science: Methods of detecting Exoplantes -- The Radial Velocity Method -- The Transit method -- The Microlensing method -- Direct imaging of Exoplanets.  .
Record Nr. UNINA-9910254640603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...