Vai al contenuto principale della pagina

Lattice-Gas Cellular Automata and Lattice Boltzmann Models [[electronic resource] ] : An Introduction / / by Dieter A. Wolf-Gladrow



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wolf-Gladrow Dieter A Visualizza persona
Titolo: Lattice-Gas Cellular Automata and Lattice Boltzmann Models [[electronic resource] ] : An Introduction / / by Dieter A. Wolf-Gladrow Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000
Edizione: 1st ed. 2000.
Descrizione fisica: 1 online resource (X, 314 p.)
Disciplina: 510
Soggetto topico: Mathematical analysis
Analysis (Mathematics)
Mathematical logic
Global analysis (Mathematics)
Manifolds (Mathematics)
Numerical analysis
Applied mathematics
Engineering mathematics
Mechanics
Analysis
Mathematical Logic and Foundations
Global Analysis and Analysis on Manifolds
Numerical Analysis
Mathematical and Computational Engineering
Classical Mechanics
Classificazione: 65M99
35C35
35Q30
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages [275]-308) and index.
Nota di contenuto: From the contents: Introduction: Preface; Overview -- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata -- One-dimensional cellular automata -- Two-dimensional cellular automata -- Lattice-gas cellular automata: The HPP lattice-gas cellular automata -- The FHP lattice-gas cellular automata -- Lattice tensors and isotropy in the macroscopic limit -- Desperately seeking a lattice for simulations in three dimensions -- 5 FCHC -- The pair interaction (PI) lattice-gas cellular automata -- Multi-speed and thermal lattice-gas cellular automata -- Zanetti (staggered) invariants -- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation -- Chapman-Enskog: From Boltzmann to Navier-Stokes -- The maximum entropy principle. Lattice Boltzmann Models: .... Appendix.
Sommario/riassunto: Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Titolo autorizzato: Lattice-gas cellular automata and lattice Boltzmann models  Visualizza cluster
ISBN: 3-540-46586-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466608803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1725