1.

Record Nr.

UNISA996466608803316

Autore

Wolf-Gladrow Dieter A

Titolo

Lattice-Gas Cellular Automata and Lattice Boltzmann Models [[electronic resource] ] : An Introduction / / by Dieter A. Wolf-Gladrow

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000

ISBN

3-540-46586-3

Edizione

[1st ed. 2000.]

Descrizione fisica

1 online resource (X, 314 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1725

Classificazione

65M99

35C35

35Q30

Disciplina

510

Soggetti

Mathematical analysis

Analysis (Mathematics)

Mathematical logic

Global analysis (Mathematics)

Manifolds (Mathematics)

Numerical analysis

Applied mathematics

Engineering mathematics

Mechanics

Analysis

Mathematical Logic and Foundations

Global Analysis and Analysis on Manifolds

Numerical Analysis

Mathematical and Computational Engineering

Classical Mechanics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (pages [275]-308) and index.

Nota di contenuto

From the contents: Introduction: Preface; Overview -- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata -- One-dimensional cellular automata -- Two-dimensional cellular automata -- Lattice-gas cellular automata: The HPP lattice-gas



cellular automata -- The FHP lattice-gas cellular automata -- Lattice tensors and isotropy in the macroscopic limit -- Desperately seeking a lattice for simulations in three dimensions -- 5 FCHC -- The pair interaction (PI) lattice-gas cellular automata -- Multi-speed and thermal lattice-gas cellular automata -- Zanetti (staggered) invariants -- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation -- Chapman-Enskog: From Boltzmann to Navier-Stokes -- The maximum entropy principle. Lattice Boltzmann Models: .... Appendix.

Sommario/riassunto

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.