Vai al contenuto principale della pagina
Autore: | Evans Steven N |
Titolo: | Probability and Real Trees [[electronic resource] ] : École d'Été de Probabilités de Saint-Flour XXXV-2005 / / by Steven N. Evans |
Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008 |
Edizione: | 1st ed. 2008. |
Descrizione fisica: | 1 online resource (XI, 201 p.) |
Disciplina: | 511.52 |
Soggetto topico: | Probabilities |
Combinatorics | |
Geometry | |
Probability Theory and Stochastic Processes | |
Note generali: | Notes from a series of ten lectures given at the Saint-Flour Probability Summer School, July 6-23, 2005. |
Nota di bibliografia: | Includes bibliographical references (pages [177]-184) and index. |
Nota di contenuto: | Around the Continuum Random Tree -- R-Trees and 0-Hyperbolic Spaces -- Hausdorff and Gromov–Hausdorff Distance -- Root Growth with Re-Grafting -- The Wild Chain and other Bipartite Chains -- Diffusions on a R-Tree without Leaves: Snakes and Spiders -- R–Trees from Coalescing Particle Systems -- Subtree Prune and Re-Graft. |
Sommario/riassunto: | Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory. |
Titolo autorizzato: | Probability and real trees |
ISBN: | 3-540-74798-2 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 996466507103316 |
Lo trovi qui: | Univ. di Salerno |
Opac: | Controlla la disponibilità qui |