1.

Record Nr.

UNISA996466507103316

Autore

Evans Steven N

Titolo

Probability and Real Trees [[electronic resource] ] : École d'Été de Probabilités de Saint-Flour XXXV-2005 / / by Steven N. Evans

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2008

ISBN

3-540-74798-2

Edizione

[1st ed. 2008.]

Descrizione fisica

1 online resource (XI, 201 p.)

Collana

École d'Été de Probabilités de Saint-Flour, , 0721-5363 ; ; 1920

Disciplina

511.52

Soggetti

Probabilities

Combinatorics

Geometry

Probability Theory and Stochastic Processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Notes from a series of ten lectures given at the Saint-Flour Probability Summer School, July 6-23, 2005.

Nota di bibliografia

Includes bibliographical references (pages [177]-184) and index.

Nota di contenuto

Around the Continuum Random Tree -- R-Trees and 0-Hyperbolic Spaces -- Hausdorff and Gromov–Hausdorff Distance -- Root Growth with Re-Grafting -- The Wild Chain and other Bipartite Chains -- Diffusions on a R-Tree without Leaves: Snakes and Spiders -- R–Trees from Coalescing Particle Systems -- Subtree Prune and Re-Graft.

Sommario/riassunto

Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.