Vai al contenuto principale della pagina

Iterative Methods for Fixed Point Problems in Hilbert Spaces [[electronic resource] /] / by Andrzej Cegielski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Cegielski Andrzej Visualizza persona
Titolo: Iterative Methods for Fixed Point Problems in Hilbert Spaces [[electronic resource] /] / by Andrzej Cegielski Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (XVI, 298 p. 61 illus., 3 illus. in color.)
Disciplina: 519.6
Soggetto topico: Mathematical optimization
Functional analysis
Calculus of variations
Numerical analysis
Operator theory
Optimization
Functional Analysis
Calculus of Variations and Optimal Control; Optimization
Numerical Analysis
Operator Theory
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (p. 275-289) and index.
Nota di contenuto: 1 Introduction -- 2 Algorithmic Operators -- 3 Convergence of Iterative Methods -- 4 Algorithmic Projection Operators -- 5 Projection methods.
Sommario/riassunto: Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
Titolo autorizzato: Iterative methods for fixed point problems in Hilbert spaces  Visualizza cluster
ISBN: 3-642-30901-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466493103316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2057