Vai al contenuto principale della pagina

Evolutionary Computation in Combinatorial Optimization [[electronic resource] ] : 14th European Conference, EvoCOP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Christian Blum, Gabriela Ochoa



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Evolutionary Computation in Combinatorial Optimization [[electronic resource] ] : 14th European Conference, EvoCOP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers / / edited by Christian Blum, Gabriela Ochoa Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (XII, 241 p. 62 illus.)
Disciplina: 005.1
Soggetto topico: Numerical analysis
Algorithms
Computer science—Mathematics
Discrete mathematics
Computer science
Numerical Analysis
Discrete Mathematics in Computer Science
Theory of Computation
Persona (resp. second.): BlumChristian
OchoaGabriela
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Intro -- Preface -- Organization -- Table of Contents -- A Hybrid Ant Colony Optimization Algorithm for the Far From Most String Problem -- 1 Introduction -- 1.1 Notation -- 1.2 Problem Definition -- 1.3 Related Work -- 1.4 Organization of the Paper -- 2 A Linear Integer Programming Model -- 3 The Proposed Approach -- 3.1 Preliminaries -- 3.2 Algorithmic Framework -- 3.3 The ACO Phase -- 4 Experimental Evaluation -- 4.1 Problem Instances -- 4.2 Results -- 5 Conclusions and Future Work -- References -- A Parametric Framework for Cooperative Parallel Local Search -- 1 Introduction -- 2 Local Search and Parallelism -- 3 Cooperative Search Framework -- 3.1 Framework Design -- 3.2 Ensuring Diversification -- 3.3 Ensuring Intensification -- 4 An X10 Implementation -- 5 Results and Analysis -- 6 Conclusion and Further Work -- References -- A Survey of Meta-heuristics Used for Computing Maximin Latin Hypercube -- 1 Introduction -- 2 Algorithm Descriptions -- 2.1 Genetic Algorithms -- 2.2 Simulated Annealing -- 2.3 Iterated Local Search -- 3 Mutations -- 4 Evaluation Functions -- 5 Experiments -- 5.1 Effect of Algorithm Parameters -- 5.2 Effect of the Mutations -- 5.3 Effect of the Evaluation Function -- 5.4 Scalability of the Algorithms -- 6 HighScores -- 7 Conclusion -- References -- An Analysis of Parameters of irace -- 1 Introduction -- 2 The irace Procedure -- 3 Experimental Setup -- 3.1 Configuration Scenarios -- 3.2 Training Set Analysis -- 3.3 Experimental Setup -- 4 Experiments -- 5 Final Remarks and Future Work -- References -- An Improved Multi-objective Algorithm for the Urban Transit Routing Problem -- 1 Introduction -- 2 Problem Description -- 3 Methodology -- 3.1 NSGAII -- 3.2 Heuristic Construction -- 3.3 Genetic Operators -- 4 Results -- 5 Conclusion -- References.
An Iterated Greedy Heuristic for Simultaneous Lot-Sizing and Scheduling Problem in Production Flow Shop Environments -- 1 Introduction -- 2 Problem Description -- 3 Iterated Greedy Heuristic for the LSSPFS -- 3.1 Solution Representation -- 3.2 Construction of an Initial Solution -- 3.3 Destruction and Construction Procedures -- 3.4 Local Search -- 3.5 Lot-sizing Improvement -- 4 Computational Experiments -- 4.1 Calibration of the IG Heuristic -- 4.2 Results and Comparisons -- 4.3 Analysis of the Computational Times -- 5 Conclusion -- References -- Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case -- 1 Introduction -- 2 Related Work -- 3 Problem Definition -- 4 Modeling the Dynamic Scenario -- 4.1 Segments and Events -- 4.2 Expected Number of Bikes at Stations -- 4.3 Classification of Stations -- 4.4 Restrictions on Loading Instructions -- 5 Greedy Construction Heuristic -- 6 Metaheuristic Approaches -- 7 Computational Results -- 8 Conclusions and Future Work -- References -- Cooperative Selection: Improving Tournament Selection via Altruism -- 1 Introduction -- 2 Cooperative Selection -- 2.1 Scheme Description -- 2.2 Properties and Tuning of Parameters -- 3 Validating Cooperative Selection in a Noisy Real Problem -- 3.1 Estimated Secondary Structure Similarity (ESSS) -- 3.2 Experimental Setup -- 3.3 Analysis of Results -- 4 Conclusions and Future Works -- References -- Diversity-Driven Selection of Multiple Crossover Operators for the Capacitated Arc Routing Problem -- 1 Introduction -- 2 Background -- 2.1 Problem Definition -- 2.2 MAENS -- 2.3 Approximation Algorithms -- 3 A Distance Measure for the CARP -- 3.1 Measuring the Average Diversity of the Population -- 3.2 A Revised Distance Measure Based on Neighbour Tasks -- 3.3 Diversity-Driven Stochastic Ranking -- 4 Operator Selection -- 4.1 Crossover Operators.
4.2 Adaptive Operator Selection -- 5 Experimental Studies -- 6 Conclusions -- References -- Dynamic Period Routing for a Complex Real-World System: A Case Study in Storm Drain Maintenance -- 1 Introduction -- 2 Related Works -- 3 Storm Drains Maintenance Problem -- 4 Adaptive Planning Heuristic (APH) -- 4.1 Routing Stage -- 4.2 Adaptive Planning Stage -- 5 Computational Results -- 6 Conclusion -- References -- Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem -- 1 Introduction -- 2 Background on Landscape Theory -- 3 Hamiltonian Path Optimization Problem -- 4 Landscape for Reversals -- 4.1 Component Model -- 4.2 Proof of Elementariness -- 5 Landscape Structure for Swaps -- 5.1 Previous Results for QAP -- 5.2 Elementary Landscape Decomposition of the HPO -- 6 Conclusions and Future Work -- References -- Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection -- 1 Introduction -- 1.1 Goals -- 2 Background -- 2.1 Particle Swarm Optimisation (PSO) -- 2.2 Related Work on Feature Selection -- 3 The Proposed Approach -- 3.1 Determine the Number of Features Selected -- 3.2 How to Select Features -- 4 Experimental Design -- 5 Results and Discussions -- 5.1 Results of GPSO -- 5.2 Comparisons on Computational Time -- 5.3 Further Comparisons with Traditional Methods -- 6 Conclusions and Future Work -- References -- Global Optimization of Multimodal Deceptive Functions -- 1 Introduction -- 2 Preliminaries -- 2.1 Simulated Annealing -- 2.2 Graph Clustering Based Model Building -- 3 Extended Simulated Annealing -- 4 Experiments -- 5 Results -- 5.1 Performance of the Classical Simulated Annealing -- 5.2 Performance of the Extended Simulated Annealing -- 6 Conclusions -- References -- Learning Inherent Networks from Stochastic Search Methods -- 1 Introduction -- 2 Methods.
2.1 Studied Problem and Search Heuristic -- 2.2 Monitoring the Search Dynamics -- 2.3 The Nodes -- 2.4 The Edges -- 3 Experiments -- 4 Results -- 4.1 Comparative and Convergence Analysis of the Inherent Networks -- 4.2 Structure of the Inherent Networks -- 5 Conclusions -- References -- Metaheuristics for the Pick-Up and Delivery Problem with Contracted Orders -- 1 Introduction -- 2 Related Work -- 3 Problem Definition -- 3.1 Time Window Model -- 3.2 Objective -- 4 Solution Methods -- 4.1 Local Search Operators -- 4.2 Metaheuristics -- 5 Computational Experiments -- 5.1 Generating Orders -- 5.2 Speed and Travel Parameters -- 5.3 Aims -- 5.4 Findings -- 6 Conclusions and Future Work -- References -- Modeling an Artificial Bee Colony with Inspector for Clustering Tasks -- 1 Introduction -- 2 The Clustering Problem -- 3 Artificial Bee Colony -- 4 Inspector Bee in the Colony -- 5 Algorithm Structure and Fitness Function -- 6 Experimental Results -- 6.1 Convergence Analysis -- 7 Conclusions and Future Work -- References -- Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach -- 1 Introduction -- 2 Related Literature -- 3 The Proposed Algorithm -- 3.1 General Structure of the Algorithm -- 3.2 Initialization -- 3.3 Genetic Algorithm -- 3.4 Variable Neighborhood Descent -- 4 Computational Experiments -- 4.1 Benchmark Instances -- 4.2 Results -- 5 Conclusion -- References -- Phase Transition and Landscape Properties of the Number Partitioning Problem -- 1 Introduction -- 2 Number Partitioning Problem -- 2.1 Problem Definition -- 2.2 Phase Transition in NPP -- 3 Landscape of NPP -- 3.1 Definitions and Experimental Setup -- 3.2 Experimental Results -- 4 Conclusions -- References -- The Firefighter Problem: Application of Hybrid Ant Colony Optimization Algorithms -- 1 Introduction -- 2 The Proposed Algorithms.
2.1 Solution Representation and Pheromone Model -- 2.2 ACO: A Pure MMAS Approach -- 2.3 HyACO: A Hybrid ACO Variant -- 3 Experimental Evaluation -- 4 Conclucions and Future Work -- References -- The Influence of Correlated Objectives on Different Types of P-ACO Algorithms -- 1 Introduction -- 2 MOPs with Correlated Objectives -- 3 Ranking Methods for MOPs and P-ACO -- 4 Results -- 4.1 Expected Correlation -- 4.2 Experimental Results -- 5 Conclusion -- References -- Author Index.
Sommario/riassunto: This book constitutes the refereed proceedings of the 14th European Conference on Evolutionary Computation in Combinatorial Optimization, Evo COP 2014, held in Granada, Spain, in April 2014, co-located with the Evo*2014 events Euro GP, Evo BIO, Evo MUSART and Evo Applications. The 20 revised full papers presented were carefully reviewed and selected from 42 submissions. The papers cover the following topics: swarm intelligence algorithms, fitness landscapes and adaptive algorithms, real world and routing problems and cooperative and metaheuristic search.
Titolo autorizzato: Evolutionary Computation in Combinatorial Optimization  Visualizza cluster
ISBN: 3-662-44320-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996202528403316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Theoretical Computer Science and General Issues, . 2512-2029 ; ; 8600