Vai al contenuto principale della pagina

Microgrids : Dynamic Modeling, Stability and Control



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Shafiee Qobad Visualizza persona
Titolo: Microgrids : Dynamic Modeling, Stability and Control Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (446 pages)
Disciplina: 621.31
Soggetto topico: Microgrids (Smart power grids)
Electric power system stability
Altri autori: NaderiMobin  
BevraniHassan  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Microgrid Concept and Capabilities -- 1.3 Microgrid Structure -- 1.4 Microgrids in the Future Smart Grids -- 1.5 Microgrids‐Integrated Power Grids -- 1.6 Current Trends and Future Directions -- 1.6.1 Dynamic Behavior of MGs and Their Impacts on Power Grids -- 1.6.2 Microgrid‐Based Ancillary Services -- 1.6.3 Dynamic Modeling and Control -- 1.7 The Book Content and Organization -- References -- Part I Individual Microgrids -- Chapter 2 Microgrid Dynamic Modeling: Concepts and Fundamentals -- 2.1 Introduction -- 2.2 Dynamics and Modeling -- 2.3 Fundamental Analysis Tools and Requirements -- 2.3.1 State‐Space (Small‐Signal) Modeling -- 2.3.1.1 Finding Differential Equations -- 2.3.1.2 Park and Clark Transformations -- 2.3.1.3 Linearization -- 2.3.1.4 State‐Space Representation -- 2.3.1.5 Interconnecting Modules -- 2.3.2 Detailed Modeling -- 2.3.3 Simplification Methods -- 2.3.3.1 Truncation (Regular Perturbation) -- 2.3.3.2 Residualization (Singular Perturbation) -- 2.3.3.3 Aggregation -- 2.3.3.4 Sensitivity Analysis -- 2.3.4 Prony Analysis -- 2.3.5 Large‐Signal Modeling -- 2.4 Small‐Signal Modeling of Microgrid Components -- 2.4.1 DC-AC Converter (Inverter) -- 2.4.2 AC-DC Converter (Rectifier) -- 2.4.3 DC-DC Converter (Chopper) -- 2.4.4 LC Filter -- 2.4.5 Power Network -- 2.4.5.1 Virtual Resistor Calculation -- 2.4.6 Loads -- 2.4.6.1 Constant RL Impedance Load -- 2.4.6.2 Constant Power Load (CPL) -- 2.4.6.3 Motor Load -- 2.4.6.4 Active Load -- 2.4.7 Energy Resources and Storages -- 2.4.7.1 Wind Generation Unit -- 2.4.7.2 Photovoltaic Generation Unit -- 2.4.7.3 Battery -- 2.4.7.4 Super‐Capacitor -- 2.5 Small‐Signal Modeling of Microgrid Controllers -- 2.5.1 Primary Control Strategies.
2.5.1.1 Grid‐Forming Strategy -- 2.5.1.2 Grid‐Following Strategy -- 2.5.2 Secondary Control -- 2.5.3 Higher Control Levels -- 2.6 Large‐Signal Modeling: An Example -- 2.6.1 Governing Equations on Synchronverter -- 2.6.2 Nonlinear State‐Space Representation -- 2.7 Summary -- References -- Chapter 3 Microgrid Dynamic Modeling: Overall Modeling and Case Studies -- 3.1 Introduction -- 3.2 Overall Microgrid Dynamic Modeling -- 3.2.1 Common Reference Frame -- 3.2.2 Microgrid General State‐Space Model -- 3.2.3 Grid Model -- 3.3 Small‐Signal Modeling of DC and AC Microgrids -- 3.3.1 A Grid‐Connected PV -- 3.3.2 Grid‐Connected AC Microgrids -- 3.3.3 Islanded AC Microgrids: The Detailed Model -- 3.3.4 Islanded AC Microgrids: A Sensitivity Analysis‐Based Simplified Model -- 3.3.4.1 Removing/Reconfiguration Process of Modules -- 3.3.4.2 DLFMs Comparison of the Detailed and Simplified Models -- 3.3.4.3 The Oscillatory DLFM Comparison -- 3.3.5 Islanded AC Microgrids: Aggregated Single‐Order Model -- 3.3.5.1 General Steps of Modeling -- 3.3.5.2 Virtual Swing Equation‐Based Single‐Order Model -- 3.3.6 Islanded DC Microgrid -- 3.4 Large‐Signal Modeling of Microgrids -- 3.4.1 Model Validation -- 3.4.2 Time‐Domain Simulations -- 3.5 Summary -- References -- Chapter 4 Microgrids Stability -- 4.1 Introduction -- 4.2 Stability Definition and Classification -- 4.3 Basic Requirements -- 4.3.1 Eigenvalue Analysis -- 4.3.2 Participation Matrix -- 4.3.3 Sensitivity Analysis -- 4.4 Small‐Signal Stability Analysis -- 4.4.1 Grid‐Connected PV -- 4.4.1.1 Sensitivity Analysis: LC Filter Parameters -- 4.4.1.2 Sensitivity Analysis: Coupling/Grid Line Length -- 4.4.1.3 Sensitivity Analysis: PLL Gains -- 4.4.1.4 Sensitivity Analysis: Current Control Gains -- 4.4.1.5 Sensitivity Analysis: DC Voltage Control gains -- 4.4.2 Grid‐Connected AC Microgrids.
4.4.2.1 Sensitivity Analysis: Grid Strength Study -- 4.4.2.2 Sensitivity Analysis: Interaction of GFL DERs -- 4.4.3 Islanded AC Microgrids -- 4.4.3.1 Sensitivity Analysis of Droop Gains -- 4.4.3.2 Sensitivity Analysis of Virtual Impedance -- 4.4.3.3 Stability Analysis of Secondary Control -- 4.4.3.4 Sensitivity Analysis of GFL DER Parameters -- 4.4.3.5 Weakness of AC Microgrids -- 4.4.3.6 Relative Stability Improvement Using Grid‐Supporting Control Strategy -- 4.4.4 Islanded DC Microgrids -- 4.5 Transient Stability -- 4.5.1 Power Sharing Stability in AC Microgrids -- 4.5.2 Synchronverter Stabilization -- 4.5.2.1 Adaptive Backstepping Stabilizing Method -- 4.5.2.2 Simulation Results -- 4.6 Summary -- References -- Chapter 5 Microgrid Control: Concepts and Fundamentals -- 5.1 Introduction -- 5.2 Fundamentals and Requirements -- 5.2.1 Introduction to Control Systems -- 5.2.2 Control Objectives and Challenges -- 5.2.3 Control Architectures -- 5.3 Control Strategies for Power Converters -- 5.3.1 Introduction -- 5.3.2 Grid‐Following Power Converters -- 5.3.2.1 Current Control -- 5.3.2.2 Synchronization Algorithm -- 5.3.3 Grid‐Forming Power Converters -- 5.4 Hierarchical Control -- 5.4.1 The Control Hierarchy -- 5.4.2 Control Layers -- 5.5 Primary Control -- 5.5.1 Droop Control -- 5.5.1.1 Droop Control for Inductive Grids -- 5.5.1.2 Droop Control for Resistive Grids -- 5.5.1.3 Droop Control for Resistive-Inductive Grids -- 5.5.1.4 Discussion on the Conventional Droop Control -- 5.5.1.5 Droop Control for DC Grids -- 5.5.2 Virtual Impedance -- 5.5.3 A Simulation Study for Primary Control of AC Microgrids -- 5.5.3.1 Case Study -- 5.5.3.2 Simulation Results -- 5.6 Secondary Control -- 5.6.1 Secondary Control Functions and Strategies -- 5.6.1.1 Secondary Control Functions -- 5.6.1.2 Secondary Control Strategies -- 5.6.2 Centralized Secondary Control.
5.6.3 Distributed Secondary Control -- 5.6.3.1 Communication Network as a Graph -- 5.6.3.2 Average‐Based DISC -- 5.6.3.3 Consensus‐Based DISC -- 5.6.3.4 Event‐Triggered DISC -- 5.6.4 Decentralized Secondary Control -- 5.6.4.1 Washout Filter‐Based DESC -- 5.6.4.2 Local Variable‐Based DESC -- 5.6.4.3 Estimation‐Based DESC -- 5.6.5 A Simulation Study for Secondary Control of AC Microgrids -- 5.6.5.1 Case Study and Controller Implementation -- 5.6.5.2 Simulation Results -- 5.7 Central Control -- 5.8 Global Control -- 5.9 Summary -- References -- Chapter 6 Advances in Microgrid Control -- 6.1 Introduction -- 6.2 Advanced Control Synthesis -- 6.2.1 Advanced Control Techniques -- 6.2.1.1 Optimal Control -- 6.2.1.2 Robust Control -- 6.2.1.3 Nonlinear Control -- 6.2.1.4 Intelligent Control -- 6.2.2 Model Predictive Control -- 6.2.2.1 MPC for Microgrids -- 6.2.2.2 Finite Control Set Model Predictive Control -- 6.2.3 Model Predictive Control of DC Microgrids with Constant Power Loads -- 6.2.3.1 Case Study and Dynamic Modeling -- 6.2.3.2 Design Methodology -- 6.2.3.3 Real‐Time Hardware in the Loop Results -- 6.2.4 Hybrid Fuzzy Predictive Control for Smooth Transition of AC Microgrids -- 6.2.4.1 Case Study and Dynamic Modeling -- 6.2.4.2 Control System Design -- 6.2.4.3 Simulation Results -- 6.3 Virtual Dynamic Control -- 6.3.1 Concept and Structure -- 6.3.2 Virtual Synchronous Generator (VSG) -- 6.3.2.1 VSG Applications -- 6.3.3 Virtual Dynamic Control of DC Microgrids -- 6.3.3.1 Dynamic Improvement of DC Microgrids Using Virtual Inertia Concept -- 6.3.3.2 Case Study and Simulation Results -- 6.4 Resilient and Cybersecure Control -- 6.4.1 Microgrid as a Cyber‐Physical System -- 6.4.2 Communication Requirements -- 6.4.3 Cybersecurity -- 6.4.3.1 Network/Data Cyber Threats on Microgrids -- 6.4.3.2 Distributed Secondary Control Under Network Cyber Attacks.
6.4.3.3 Cyberattack Detection -- 6.4.3.4 Cyberattack Mitigation -- 6.4.4 Event‐Triggered Control -- 6.4.4.1 Event‐Triggered Secondary Control of AC Microgrids -- 6.4.4.2 Physical and Control Layers -- 6.4.4.3 Secondary Control Design -- 6.4.4.4 Case Study and Simulation Results -- 6.5 Summary -- References -- Part II Interconnected Microgrids -- Chapter 7 Interconnected Microgrids: Opportunities and Challenges -- 7.1 Introduction -- 7.2 An Overview -- 7.3 Architectures of Interconnected Microgrids -- 7.4 Benefits, Challenges, and Research Fields -- 7.5 Operation of Interconnected Microgrids -- 7.6 Vacancies for Future Research -- 7.6.1 IMG Dynamic Modeling -- 7.6.2 IMG Stability Analysis -- 7.6.3 IMG Control -- 7.7 Summary -- References -- Chapter 8 Modeling of Interconnected Microgrids -- 8.1 Introduction -- 8.2 Interconnection Method -- 8.3 Module Modeling -- 8.3.1 Microgrid Modeling -- 8.3.1.1 Modeling of Secondary Control for CB‐IMGs -- 8.3.1.2 Other MG Modules -- 8.3.1.3 Overall MG Model -- 8.3.2 Interlinking Line Modeling -- 8.3.3 Back‐to‐Back Converter Modeling -- 8.3.3.1 AC Side of the BTBC -- 8.3.3.2 DC Side of the BTBC -- 8.3.3.3 Dependent Current and Voltage Sources -- 8.3.3.4 BTBC Power Part Interconnection -- 8.3.3.5 Power Controller -- 8.3.3.6 DC Voltage Controller -- 8.3.3.7 Synchronizing PLLs -- 8.3.3.8 Complete Interconnection of BTBC Modules -- 8.3.4 Circuit Breaker Modeling -- 8.4 Overall IMG Modeling -- 8.4.1 Comprehensive Modeling of CB‐IMGs -- 8.4.2 Comprehensive Modeling of BTBC‐IMGs -- 8.5 Model Validation -- 8.5.1 Model Validation Procedure -- 8.5.2 Real‐Time Simulator -- 8.5.3 Validation of CB‐IMG Modeling -- 8.5.3.1 Case Study Information -- 8.5.3.2 Prony Analysis Results -- 8.5.3.3 Comparison Results -- 8.5.4 Validation of BTBC‐IMG Modeling -- 8.6 Reduced‐Order Models.
8.6.1 Simplified Model Application in CB‐IMG Frequency Control.
Sommario/riassunto: This book delves into the dynamic modeling, stability, and control of microgrids, offering a comprehensive overview of microgrid technology as a solution for modern power grid challenges. It discusses the basic structures, types, operating modes, and hierarchical control levels of microgrids. The authors, Qobad Shafiee, Mobin Naderi, and Hassan Bevrani, provide insights into advanced control synthesis approaches and virtual dynamic control, supported by real-time simulations and experimental studies. The book is designed for researchers and professionals in electrical engineering, focusing on the integration of microgrids into existing power systems, and aims to enhance understanding of microgrid dynamics and stability through practical applications and theoretical analysis.
Titolo autorizzato: Microgrids  Visualizza cluster
ISBN: 9781119906230
1119906237
9781119906216
1119906210
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019903903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui