Vai al contenuto principale della pagina

Positivity in Arakelov Geometry over Adelic Curves : Hilbert-Samuel Formula and Equidistribution Theorem / / by Huayi Chen, Atsushi Moriwaki



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chen Huayi Visualizza persona
Titolo: Positivity in Arakelov Geometry over Adelic Curves : Hilbert-Samuel Formula and Equidistribution Theorem / / by Huayi Chen, Atsushi Moriwaki Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (248 pages)
Disciplina: 516.35
Soggetto topico: Geometry, Algebraic
Number theory
Algebraic Geometry
Number Theory
Persona (resp. second.): MoriwakiAtsushi
Nota di contenuto: Introduction -- Review and Preliminaries -- Normed Graded Linear Series over a Trivially Valued Field -- Arithmetic Volumes over a General Adelic Curve -- Hilbert-Samuel Property -- Relative Ampleness and Nefness -- Global Adelic Space of an Arithmetic Variety -- Generically Big and Pseudo-effective Adelic Line Bundles -- Global Positivity Conditions -- Appendix A: Some Slope Estimates.
Sommario/riassunto: This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.
Titolo autorizzato: Positivity in Arakelov Geometry over Adelic Curves  Visualizza cluster
ISBN: 3-031-61668-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910882893703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Progress in Mathematics, . 2296-505X ; ; 355