1.

Record Nr.

UNINA9910882893703321

Autore

Chen Huayi

Titolo

Positivity in Arakelov Geometry over Adelic Curves : Hilbert-Samuel Formula and Equidistribution Theorem / / by Huayi Chen, Atsushi Moriwaki

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024

ISBN

3-031-61668-5

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (248 pages)

Collana

Progress in Mathematics, , 2296-505X ; ; 355

Disciplina

516.35

Soggetti

Geometry, Algebraic

Number theory

Algebraic Geometry

Number Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Review and Preliminaries -- Normed Graded Linear Series over a Trivially Valued Field -- Arithmetic Volumes over a General Adelic Curve -- Hilbert-Samuel Property -- Relative Ampleness and Nefness -- Global Adelic Space of an Arithmetic Variety -- Generically Big and Pseudo-effective Adelic Line Bundles -- Global Positivity Conditions -- Appendix A: Some Slope Estimates.

Sommario/riassunto

This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.