Vai al contenuto principale della pagina

Catalysts for fine chemical synthesis [[electronic resource] ] : hydrolysis, oxidation and reduction



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Roberts Stanley M Visualizza persona
Titolo: Catalysts for fine chemical synthesis [[electronic resource] ] : hydrolysis, oxidation and reduction Visualizza cluster
Pubblicazione: Hoboken, : Wiley, 2003
Descrizione fisica: 1 online resource (245 p.)
Disciplina: 660.634
660/.28443
Soggetto topico: Catalysts
Chemistry, Organic
Enzymes
Hydrolysis
Organic compounds
Oxidation-reduction reaction
Synthesis
Biomedical Engineering
Health & Biological Sciences
Altri autori: PoignantGeraldine  
Note generali: Description based upon print version of record.
Nota di contenuto: Catalysts for Fine Chemical Synthesis Volume 1; Contents; Series Preface; Preface to Volume 1; Abbreviations; PART I: REVIEW; 1 The Integration of Biotransformations into the Catalyst Portfolio; 1.1 Hydrolysis of esters, amides, nitriles and oxiranes; 1.2 Reduction reactions; 1.2.1 Reduction of carbonyl compounds; 1.2.2 Reduction of alkenes; 1.3 Oxidative transformations; 1.4 Carbon-carbon bond-forming reactions; 1.5 Conclusions; References; PART II: PROCEDURES; 2 General Information; 3 Asymmetric Epoxidation; 3.1 Introduction; References; 4 Epoxidation of a, b-Unsaturated Carbonyl Compounds
4.1 Non-asymmetric epoxidation4.2 Asymmetric epoxidation using poly-D-leucine; 4.2.1 Synthesis of leucine N-carboxyanhydride; 4.2.2 Synthesis of immobilized poly-D-leucine; 4.2.3 Asymmetric epoxidation of (E)-benzylideneacetophenone; 4.2.4 Conclusion; 4.3 Asymmetric epoxidation using chiral modified diethylzinc; 4.3.1 Epoxidation of 2-isobutylidene-1-tetralone; 4.3.2 Conclusion; 4.4 Asymmetric epoxidation of (E)-benzylideneacetophenone using the La-(R)-BINOL-Ph(3)PO/cumene hydroperoxide system; 4.4.1 Merits of the system; References; 5 Epoxidation of Allylic Alcohols
5.1 Non-asymmetric epoxidation5.2 Asymmetric epoxidation using a chiral titanium complex; 5.2.1 Epoxidation of cinnamyl alcohol; 5.2.2 Epoxidation of (E)-2-methyl-3-phenyl-2-propenol; 5.2.3 Epoxidation of (E)-2-hexen-1-ol; 5.2.4 Conclusion; 5.3 Asymmetric epoxidation of (E)-undec-2-en-1-ol using poly(octamethylene tartrate); 5.3.1 Synthesis of branched poly (octamethylene-L-(+)-tartrate); 5.3.2 Asymmetric epoxidation of (E)-undec-2-en-1-ol; References; 6 Epoxidation of Unfunctionalized Alkenes and a, b-Unsaturated Esters
6.1 Asymmetric epoxidation of disubstituted Z-alkenes using a chiral salen-manganese complex6.1.1 Epoxidation of (Z)-methyl styrene; 6.1.2 Epoxidation of (Z)-ethyl cinnamate; 6.1.3 Conclusion; 6.2 Asymmetric epoxidation of disubstituted E-alkanes using a D-fructose based catalyst; 6.2.1 Epoxidation of (E)-stilbene; 6.2.2 Conclusion; 6.3 Enantioselective epoxidation of (E)-b-methylstyrene by D(2)-symmetric chiral trans-dioxoruthenium (VI) porphyrins; 6.3.1 Preparation of the trans-dioxoruthenium(VI) complexes with D(2)-symmetric porphyrins (H(2)L(1-3))
6.3.2 Enantioselective epoxidation of (E)-b-methylstyrene6.3.3 Conclusion; References; 7 Asymmetric Hydroxylation and Aminohydroxylation; 7.1 Asymmetric aminohydroxylation of 4-methoxystyrene; 7.1.1 Conclusion; 7.2 Asymmetric dihydroxylation of (1-cyclohexenyl)acetonitrile; 7.2.1 (R,R)-(1,2-Dihydroxycyclohexyl)acetonitrile acetonide; 7.2.2 Conclusion; References; 8 Asymmetric Sulfoxidation; 8.1 Asymmetric oxidation of sulfides and kinetic resolution of sulfoxides; 8.1.1 Asymmetric oxidation of 4-bromothioanisole; 8.1.2 Kinetic resolution of racemic 4-bromophenyl methyl sulfoxide; References
9 Asymmetric Reduction of Ketones Using Organometallic Catalysts
Sommario/riassunto: Catalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech catalysts, which add enormously to the repertoire of synthetic possibilities. However, catalysts are occasionally capricious, sometimes difficult to use and almost always require both skill and experience in order to achieve optimal results. This series aims to be a practical help for advanced undergraduate, graduate and postgraduate students, as well as experienced chemists in industry and academia working in organic and organometalli
Titolo autorizzato: Catalysts for Fine Chemical Synthesis  Visualizza cluster
ISBN: 1-280-27032-2
9786610270323
0-470-36296-0
0-470-85579-7
0-470-85580-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910831084903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Catalysts For Fine Chemicals Synthesis