Vai al contenuto principale della pagina
Autore: | Eberlein Patrick <1944-> |
Titolo: | Geodesics and ends in certain surfaces without conjugate points / / Patrick Eberlein |
Pubblicazione: | Providence : , : American Mathematical Society, , [1978] |
©1978 | |
Descrizione fisica: | 1 online resource (116 p.) |
Disciplina: | 516/.36 |
Soggetto topico: | Geometry, Differential |
Riemann surfaces | |
Manifolds (Mathematics) | |
Geodesics (Mathematics) | |
Note generali: | "Volume 13, issue 2 ... (first of 2 numbers)." |
Nota di bibliografia: | Bibliography: pages 110-111. |
Nota di contenuto: | ""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 PRELIMINARIES""; ""1. Definitions""; ""2. Isometries and limit sets""; ""3. Fundamental domains""; ""CHAPTER 2 FURTHER PROPERTIES OF UNIFORM VISIBILITY MANIFOLDS""; ""1. Busemann functions and horospheres""; ""2. Classification of isometries""; ""3. Classification of limit sets""; ""CHAPTER 3 PARABOLIC GEODESICS""; ""CHAPTER 4 THE ENDS OF M""; ""1. Definition of parabolic and expanding ends""; ""2. Asymptotes in finitely connected surfaces""; ""3. A characterization of parabolic geodesies"" |
""4. Total curvatures of neighborhoods of parabolic and expanding ends""""5. Structure of the divergent geodesies associated to an end""; ""CHAPTER 5 SEPARATING GEODESICS OF M""; ""1. Definition of separating geodesies""; ""2. The case of an infinite cyclic fundamental group""; ""3. The two components of the complement of a separating geodesic""; ""4. Further properties of separating geodesies""; ""5. Riemannian collared neighborhoods of expanding ends""; ""CHAPTER 6 THE SETS M[sub(0)] AND M*[sub(0)]""; ""1. Totally convex sets"" | |
""2. Construction of the smallest closed totally convex set M[sub(0)]""""3. Criteria for M[sub(0)] to be compact""; ""4. The compact deformation retract M*[sub(0)]""; ""REFERENCES"" | |
Titolo autorizzato: | Geodesics and ends in certain surfaces without conjugate points |
ISBN: | 1-4704-0204-1 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910829186703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |