|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910829186703321 |
|
|
Autore |
Eberlein Patrick <1944-> |
|
|
Titolo |
Geodesics and ends in certain surfaces without conjugate points / / Patrick Eberlein |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , [1978] |
|
©1978 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (116 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; number 199 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Geometry, Differential |
Riemann surfaces |
Manifolds (Mathematics) |
Geodesics (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 13, issue 2 ... (first of 2 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Bibliography: pages 110-111. |
|
|
|
|
|
|
Nota di contenuto |
|
""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 PRELIMINARIES""; ""1. Definitions""; ""2. Isometries and limit sets""; ""3. Fundamental domains""; ""CHAPTER 2 FURTHER PROPERTIES OF UNIFORM VISIBILITY MANIFOLDS""; ""1. Busemann functions and horospheres""; ""2. Classification of isometries""; ""3. Classification of limit sets""; ""CHAPTER 3 PARABOLIC GEODESICS""; ""CHAPTER 4 THE ENDS OF M""; ""1. Definition of parabolic and expanding ends""; ""2. Asymptotes in finitely connected surfaces""; ""3. A characterization of parabolic geodesies"" |
""4. Total curvatures of neighborhoods of parabolic and expanding ends""""5. Structure of the divergent geodesies associated to an end""; ""CHAPTER 5 SEPARATING GEODESICS OF M""; ""1. Definition of separating geodesies""; ""2. The case of an infinite cyclic fundamental group""; ""3. The two components of the complement of a separating geodesic""; ""4. Further properties of separating geodesies""; ""5. Riemannian collared neighborhoods of expanding ends""; ""CHAPTER 6 THE SETS M[sub(0)] AND M*[sub(0)]""; ""1. Totally convex sets"" |
""2. Construction of the smallest closed totally convex set M[sub(0)]""""3. Criteria for M[sub(0)] to be compact""; ""4. The compact deformation |
|
|
|
|