Vai al contenuto principale della pagina

Python data analysis : learn how to apply powerful data analysis techniques with popular open source Python modules / / Ivan Idris



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Idris Ivan Visualizza persona
Titolo: Python data analysis : learn how to apply powerful data analysis techniques with popular open source Python modules / / Ivan Idris Visualizza cluster
Pubblicazione: Birmingham : , : Packt Publishing, , 2014
Edizione: 1st edition
Descrizione fisica: 1 online resource (348 p.)
Disciplina: 005.13
Soggetto topico: Python (Computer program language)
Note generali: Includes index.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Libraries; Software used in this book; Installing software and setup; On Windows; On Linux; On Mac OS X; Building NumPY, SciPy, matplotlib, and IPython from source; Installing with setuptools; NumPy arrays; Simple application; Using IPython as a shell; Reading manual pages; IPython notebooks; Where to find help and references; Summary; Chapter 2: NumPy Arrays; The NumPy array object; The advantages of NumPy arrays
Creating a multidimensional arraySelecting NumPy array elements; NumPy numerical types; Data type objects; Character codes; The dtype constructors; The dtype attributes; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting NumPy arrays; NumPy array attributes; Converting arrays; Creating array views and copies; Fancy indexing; Indexing with a list of locations; Indexing NumPy arrays with Booleans; Broadcasting NumPy arrays; Summary; Chapter 3: Statistics and Linear Algebra; NumPy and SciPy modules; Basic descriptive statistics with NumPy
Linear algebra with NumPyInverting matrices with NumPy; Solving linear systems with NumPy; Finding eigenvalues and eigenvectors with NumPy; NumPy random numbers; Gambling with the binomial distribution; Sampling the normal distribution; Performing a normality test with SciPy; Creating a NumPy-masked array; Disregarding negative and extreme values; Summary; Chapter 4: pandas Primer; Installing and exploring pandas; pandas DataFrames; pandas Series; Querying data in pandas; Statistics with pandas DataFrames; Data aggregation with pandas DataFrames; Concatenating and appending DataFrames
Joining DataFramesHandling missing values; Dealing with dates; Pivot tables; Remote data access; Summary; Chapter 5: Retrieving, Processing, and Storing Data; Writing CSV files with NumPy and pandas; Comparing the NumPy .npy binary format and pickling pandas DataFrames; Storing data with PyTables; Reading and writing pandas DataFrames to HDF5 stores; Reading and writing to Excel with pandas; Using REST web services and JSON; Reading and writing JSON with pandas; Parsing RSS and Atom feeds; Parsing HTML with BeautifulSoup; Summary; Chapter 6: Data Visualization; matplotlib subpackages
Basic matplotlib plotsLogarithmic plots; Scatter plots; Legends and annotations; Three-dimensional plots; Plotting in pandas; Lag plots; Autocorrelation plots; Plot.ly; Summary; Chapter 7: Signal Processing and Time Series; statsmodels subpackages; Moving averages; Window functions; Defining cointegration; Autocorrelation; Autoregressive models; ARMA models; Generating periodic signals; Fourier analysis; Spectral analysis; Filtering; Summary; Chapter 8: Working with Databases; Lightweight access with sqlite3; Accessing databases from pandas; SQLAlchemy; Installing and setting up SQLAlchemy
Populating a database with SQLAlchemy
Sommario/riassunto: This book is for programmers, scientists, and engineers who have knowledge of the Python language and know the basics of data science. It is for those who wish to learn different data analysis methods using Python and its libraries. This book contains all the basic ingredients you need to become an expert data analyst.
Titolo autorizzato: Python data analysis  Visualizza cluster
ISBN: 1-78355-336-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910826444103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Community experience distilled.