LEADER 05104nam 2200649 450 001 9910826444103321 005 20200520144314.0 010 $a1-78355-336-7 035 $a(CKB)2670000000573244 035 $a(EBL)1826990 035 $a(SSID)ssj0001414387 035 $a(PQKBManifestationID)11838805 035 $a(PQKBTitleCode)TC0001414387 035 $a(PQKBWorkID)11434230 035 $a(PQKB)11557948 035 $a(Au-PeEL)EBL1826990 035 $a(CaPaEBR)ebr10962285 035 $a(CaONFJC)MIL654916 035 $a(OCoLC)894630079 035 $a(CaSebORM)9781783553358 035 $a(MiAaPQ)EBC1826990 035 $a(PPN)228022851 035 $a(EXLCZ)992670000000573244 100 $a20141111d2014 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPython data analysis $elearn how to apply powerful data analysis techniques with popular open source Python modules /$fIvan Idris 205 $a1st edition 210 1$aBirmingham :$cPackt Publishing,$d2014. 215 $a1 online resource (348 p.) 225 1 $aCommunity experience distilled 300 $aIncludes index. 311 $a1-78355-335-9 311 $a1-322-23636-4 320 $aIncludes bibliographical references and index. 327 $aCover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Libraries; Software used in this book; Installing software and setup; On Windows; On Linux; On Mac OS X; Building NumPY, SciPy, matplotlib, and IPython from source; Installing with setuptools; NumPy arrays; Simple application; Using IPython as a shell; Reading manual pages; IPython notebooks; Where to find help and references; Summary; Chapter 2: NumPy Arrays; The NumPy array object; The advantages of NumPy arrays 327 $aCreating a multidimensional arraySelecting NumPy array elements; NumPy numerical types; Data type objects; Character codes; The dtype constructors; The dtype attributes; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting NumPy arrays; NumPy array attributes; Converting arrays; Creating array views and copies; Fancy indexing; Indexing with a list of locations; Indexing NumPy arrays with Booleans; Broadcasting NumPy arrays; Summary; Chapter 3: Statistics and Linear Algebra; NumPy and SciPy modules; Basic descriptive statistics with NumPy 327 $aLinear algebra with NumPyInverting matrices with NumPy; Solving linear systems with NumPy; Finding eigenvalues and eigenvectors with NumPy; NumPy random numbers; Gambling with the binomial distribution; Sampling the normal distribution; Performing a normality test with SciPy; Creating a NumPy-masked array; Disregarding negative and extreme values; Summary; Chapter 4: pandas Primer; Installing and exploring pandas; pandas DataFrames; pandas Series; Querying data in pandas; Statistics with pandas DataFrames; Data aggregation with pandas DataFrames; Concatenating and appending DataFrames 327 $aJoining DataFramesHandling missing values; Dealing with dates; Pivot tables; Remote data access; Summary; Chapter 5: Retrieving, Processing, and Storing Data; Writing CSV files with NumPy and pandas; Comparing the NumPy .npy binary format and pickling pandas DataFrames; Storing data with PyTables; Reading and writing pandas DataFrames to HDF5 stores; Reading and writing to Excel with pandas; Using REST web services and JSON; Reading and writing JSON with pandas; Parsing RSS and Atom feeds; Parsing HTML with BeautifulSoup; Summary; Chapter 6: Data Visualization; matplotlib subpackages 327 $aBasic matplotlib plotsLogarithmic plots; Scatter plots; Legends and annotations; Three-dimensional plots; Plotting in pandas; Lag plots; Autocorrelation plots; Plot.ly; Summary; Chapter 7: Signal Processing and Time Series; statsmodels subpackages; Moving averages; Window functions; Defining cointegration; Autocorrelation; Autoregressive models; ARMA models; Generating periodic signals; Fourier analysis; Spectral analysis; Filtering; Summary; Chapter 8: Working with Databases; Lightweight access with sqlite3; Accessing databases from pandas; SQLAlchemy; Installing and setting up SQLAlchemy 327 $aPopulating a database with SQLAlchemy 330 $aThis book is for programmers, scientists, and engineers who have knowledge of the Python language and know the basics of data science. It is for those who wish to learn different data analysis methods using Python and its libraries. This book contains all the basic ingredients you need to become an expert data analyst. 410 0$aCommunity experience distilled. 606 $aPython (Computer program language) 615 0$aPython (Computer program language) 676 $a005.13 700 $aIdris$b Ivan$01624574 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826444103321 996 $aPython data analysis$94083255 997 $aUNINA