Vai al contenuto principale della pagina

Catalytic asymmetric synthesis / / edited by Takahiko Akiyama and Iwao Ojima



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Catalytic asymmetric synthesis / / edited by Takahiko Akiyama and Iwao Ojima Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2022]
©2022
Edizione: Fourth edition.
Descrizione fisica: 1 online resource (909 pages)
Disciplina: 541.39
Soggetto topico: Asymmetric synthesis
Catalysis
Persona (resp. second.): AkiyamaTakahiko
OjimaIwao <1945->
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Preface to the First Edition -- List of Contributors -- Part I Asymmetric Organocatalysis -- Chapter 1 Asymmetric Enamine and Iminium Ion Catalysis -- 1.1. Introduction -- 1.2. Representative Organocatalysts -- 1.2.1. Introduction -- 1.2.2. Reactivity of Diphenylprolinol Silyl Ether Catalyst and MacMillan's Catalyst -- 1.2.3. Cinchona Amine-Based Catalysts -- 1.3. Enamine -- 1.3.1. Aldol Reaction -- 1.3.2. Mannich Reaction -- 1.3.3. Other Functionalization of the -Position of Carbonyl Groups -- 1.3.4. Michael Reaction -- 1.3.5. Dienamine and Trienamine as an Intermediate [33] -- 1.4. Iminium Ion -- 1.4.1. Introduction of an Iminium Ion -- 1.4.2. Two Reaction Paths -- 1.4.3. Diels-Alder Type Reaction -- 1.4.4. Michael Reaction -- 1.5. Domino Reaction -- 1.5.1. Introduction of Domino (Cascade and Tandem) Reactions -- 1.5.2. Enders' Work -- 1.6. Domino Reaction and Total Synthesis -- 1.6.1. Steroid Skeleton -- 1.6.2. -Skytanthine and Quinine -- 1.6.3. (+)-Lycoposerramine Z -- 1.6.4. Estradiol Methyl Ether -- 1.6.5. MacMillan's Alkaloid Synthesis -- 1.6.6. Prostaglandin E1 Methyl Ester -- 1.6.7. Corey Lactone -- 1.7. Combination of Two Catalysts -- 1.7.1. Combination of Two Organocatalysts -- 1.7.2. Combination of Organocatalyst and Metal Catalyst -- 1.7.3. Two Chiral Catalysts -- 1.8. Conclusion -- References -- Chapter 2 Asymmetric Acid Organocatalysis -- 2.1. Introduction -- 2.2. Features of Chiral Brønsted Acids -- 2.2.1. Acidity of Chiral Brønsted Acids -- 2.2.2. Mode of Activation of Chiral Phosphoric Acids and Related Compounds -- 2.2.3. Effect of Metal Salts -- 2.3. Nucleophilic Reactions -- 2.3.1. Reactions with Imines and Iminium Salts -- 2.3.2. Reactions with Carbonyl Compounds and Oxonium Salts -- 2.4. Cycloaddition Reactions -- 2.4.1. Diels-Alder Reactions.
2.4.2. Aza-Diels-Alder Reactions -- 2.4.3. Oxa-Diels-Alder Reactions -- 2.4.4. Other Cycloaddition Reactions -- 2.4.5. Nazarov Cyclizations -- 2.5. Michael Reactions -- 2.6. Reduction -- 2.6.1. Reduction of Imines -- 2.6.2. Reduction of Ketones -- 2.6.3. Reduction of Alkenes -- 2.7. Addition to Alkenes -- 2.8. Substitution Reactions -- 2.9. Rearrangement Reactions -- 2.10. Miscellaneous Reactions -- 2.11. Construction of Axially, Planar, and Helically Chiral Compounds -- 2.12. Combination with Transition Metal Catalysts [25-27] -- 2.13. Combination with Photoredox Catalyst -- 2.14. Conclusion -- Acknowledgments -- References -- Chapter 3 Asymmetric Base Organocatalysis -- 3.1. Introduction -- 3.2. Chiral Tertiary Amine Catalysts: Chiral Acid-Base Bifunctional Catalysis -- 3.2.1. Application of Designed Pronucleophiles -- 3.2.2. Carbon-Heteroatom Bond Formations -- 3.2.3. Other Applications -- 3.3. Chiral Guanidine Catalysts -- 3.4. Other Chiral Uncharged Organobase Catalysts: Chiral Organosuperbases -- 3.4.1. Chiral Cyclopropenimine Catalysts -- 3.4.2. Chiral Triaryliminophosphorane Catalysts -- 3.4.3. Chiral P1-Phosphazene Catalysts -- 3.4.4. Chiral Higher-Order Phosphazene Catalysts -- 3.5. Conclusion and Outlook -- References -- Chapter 4 Asymmetric Phase-Transfer and Ion-Pair Organocatalyses -- 4.1. Introduction -- 4.2. Chiral Cation -- 4.2.1. Chiral Cation Phase-Transfer Catalysis -- 4.2.2. Transition-Metal/Chiral Cation Dual Catalysis -- 4.2.3. Cation-Binding Catalysis -- 4.3. Chiral-Anion -- 4.3.1. Iminium -- 4.3.2. Oxocarbenium -- 4.3.3. Carbocation -- 4.3.4. Miscellaneous -- 4.3.5. Chiral-Anion Phase Transfer -- 4.3.6. Transition-Metal/Chiral-Anion Dual Catalysis -- 4.3.7. Anion-Binding Catalysis -- 4.4. Conclusion -- References -- Chapter 5 Asymmetric Peptide Catalysis -- 5.1 Introduction.
5.2 Catalysis by N-Terminal Amino Group of Peptides -- 5.2.1 Enamine Catalysis -- 5.2.2 Iminium Ion Catalysis -- 5.2.3 Other Type of Peptide Catalysts That Utilize Terminal Amino Groups -- 5.3 Catalysis by Side Chain Functional Group on Peptides -- 5.3.1 Histidine-Based Peptide Catalysis -- 5.3.2 Aspartate/Glutamate-Based Peptide Catalysis -- 5.3.3 Arg/Lys-Based Peptide Catalysis -- 5.3.4 Cysteine-Based Peptide Catalysis -- 5.4 Catalysis by Functional Groups Covalently Bound to Peptides -- 5.4.1 Peptide Catalysts That Have Catalytic Center Connected to N-Terminal -- 5.4.2. Peptide Catalysts That Have Catalytic Center on Side Chain of Amino Acid -- 5.5 Peptide Catalysis with Other Types of Catalytic Centers -- 5.6 Conclusion -- References -- Chapter 6 Asymmetric Carbene Catalysis: A Brief Highlight of Developments in the Past Decade -- 6.1. Early Development of Asymmetric NHC Catalysis -- 6.1.1. Early Discoveries on NHC-Mediated Reactions: Benzoin and Related Reactions via Acyl Anion Intermediates -- 6.1.2. Moving from Simple Aldehydes to Enals and -Functionalized Aldehydes: A Key Progress During the First Decade of This Century -- 6.1.3. Remaining Challenges When the Last Decade Started -- 6.2. Activation of Substrates beyond Aldehydes -- 6.2.1. Activations of Stable Carboxylic Esters -- 6.2.2. Activation of Ketenes -- 6.2.3. Activation of Imines -- 6.2.4. Activation of Other Substrates -- 6.3. Single-Electron Transfer Activation and Radical Reactions -- 6.3.1. Oxidation of Aldehydes to Esters -- 6.3.2. Reductive Coupling Reactions Involving Nitroalkenes and Nitrobenzyl Bromides -- 6.3.3. Activation of Enal on -Carbon via SET for Asymmetric Reactions -- 6.3.4. Radical-Radical Coupling via NHC-Catalyzed Activation of Aldehydes -- 6.3.5. Visible-Light-Driven Radical Reactions -- 6.4. NHC as Non-Covalent (Brønsted Base) Catalysts.
6.5. Cooperative Catalysis of NHCs with Other Catalysts -- 6.5.1. Dual Catalysis of NHC Organocatalysts and Transition Metal Catalysts -- 6.5.2. Dual Catalysis of NHC Organocatalysts and Lewis Acid Co-catalysts/Additives -- 6.5.3. Dual Catalysis of NHC Organocatalysts and Brønsted Acids -- 6.5.4. Dual Catalysis of NHC Organocatalysts and Other Catalysts -- 6.6. Synthetic Applications of NHC Catalysis -- 6.6.1. Kinetic Resolution and Desymmetrization -- 6.6.2. NHC Catalysis in Natural Product Synthesis -- 6.7. Summary and Outlook -- References -- Chapter 7 Asymmetric Hypervalent Iodine Catalysis -- 7.1 Introduction -- 7.2 Oxidative Dearomative Coupling of Arenols -- 7.3 Oxidative -Functionalization of Carbonyl Compounds -- 7.4 Oxidative Difunctionalizaiton of Alkenes -- 7.5 Conclusion and Outlook -- References -- Part II Asymmetric Photochemical Reactions and Photoredox Catalysis -- Chapter 8 Asymmetric Visible-Light Photoredox Catalysis -- 8.1. Introduction -- 8.2. Dual Catalysis Approach -- 8.2.1. Lewis Base Catalysis -- 8.2.2. Hydrogen-Bonding Catalysis -- 8.2.3. Brønsted Base Catalysis -- 8.2.4. Brønsted Acid Catalysis -- 8.2.5. Lewis Acid Catalysis -- 8.2.6. Phase-Transfer Catalysis -- 8.3. Single Bifunctional Catalyst Approach -- 8.3.1. Chiral Organophotocatalysts -- 8.3.2. Chiral Organometallic Photocatalysts -- 8.4. Conclusion -- References -- Chapter 9 Asymmetric Photoredox Reactions without Photocatalysts -- 9.1. General Introduction -- 9.2 Photoexcitation of Organocatalytic Intermediates -- 9.2.1 Enamine Catalysis in EDA Complex Photoactivation -- 9.2.2 Phase Transfer Catalysis in EDA Complex Photoactivation -- 9.2.3 Iminium Ion Catalysis in EDA Complex Photoactivation -- 9.2.4 Direct Photoexcitation of Enamines -- 9.2.5 Direct Photoexcitation of Iminium Ions -- 9.3 Photoexcitation of Metal-Based Intermediates.
9.3.1 Use of Chiral Lewis Acids to Form Photoactive Intermediates -- 9.3.2 Photoexcitation of Organometallic Intermediates -- 9.4 Photochemistry and Biocatalysis -- 9.4.1 EDA Complex Photochemistry and Enzymatic Catalysis -- 9.4.2 Direct Photoexcitation Strategies in Enzymatic Catalysis -- 9.5 Methods Based on the Direct Excitation of Substrates -- 9.6 Conclusions -- Acknowledgments -- References -- Chapter 10 Enantioselective Photochemical [2+2] Cycloaddition Reactions -- 10.1. Introduction -- 10.2. Chiral Organocatalysts -- 10.2.1. Xanthone and Thioxanthone -- 10.2.2. Thioureas -- 10.2.3. Brønsted Acids -- 10.2.4. Iminium Ions -- 10.3. Chiral Metal Catalysts -- 10.3.1. Transition Metals and Lanthanides -- 10.3.2. AlBr3-Activated Oxazaborolidines -- 10.4. Dual Catalysis -- 10.4.1. Electron Transfer -- 10.4.2. Energy Transfer -- 10.5. Chiral METAL-ORGANIC Cages -- 10.6. Concluding Remarks -- Acknowledgments -- References -- Part III Asymmetric Synthesis Through C-H Bond Activation -- Chapter 11 Asymmetric C-H Functionalization of C(sp2)-H Bond -- 11.1. Introduction -- 11.2. Palladium Catalysis -- 11.2.1. Phosphorus-Based Ligands -- 11.2.2. Monoprotected Amino Acids as Chiral Ligands -- 11.2.3. Other Ligands -- 11.2.4. Chiral Transient Auxiliary -- 11.2.5. Chiral Auxiliaries -- 11.2.6. Cooperative Catalysis -- 11.2.7. Electrochemical CH Activations -- 11.3. Rhodium Catalysis -- 11.3.1. Chiral Cpx-Based Catalysts -- 11.3.2. In-Situ Generated Chiral Complexes -- 11.3.3. Other Strategies -- 11.4. Iridium Catalysis -- 11.4.1. C-C Bond Formations -- 11.4.2. CH Borylations -- 11.4.3. CH Silylations -- 11.5. Ruthenium Catalysis -- 11.5.1. Chiral Amine as the TDG -- 11.5.2. Chiral Acid -- 11.6. Scandium Catalysis -- 11.7. Nickel Catalysis -- 11.7.1. Formyl C-H Activation -- 11.7.2. Intramolecular Reactions -- 11.7.3. Intermolecular Reactions.
11.8. Cobalt Catalysis.
Sommario/riassunto: "This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis in the 10-plus years since the last edition. In this 4th edition, the authors provide 6 new chapters covering topics like photoredox catalysis and bond formation reactions, expands coverage of organocatalysis, and updates various existing chapters. Like its renowned predecessors, this new edition serves as an excellent desktop reference and text for researchers and students from the upper-level undergraduate through experienced professional in industry or academia"--
Titolo autorizzato: Catalytic asymmetric synthesis  Visualizza cluster
ISBN: 1-119-73641-2
1-119-73642-0
1-119-73640-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910677532303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui