Vai al contenuto principale della pagina

Non-halogenated flame retardant handbook / / Alexander B. Morgan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Morgan Alexander B. Visualizza persona
Titolo: Non-halogenated flame retardant handbook / / Alexander B. Morgan Visualizza cluster
Pubblicazione: Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
©2022
Edizione: Second edition.
Descrizione fisica: 1 online resource (608 pages)
Disciplina: 628.9223
Soggetto topico: Fireproofing agents
Soggetto genere / forma: Electronic books.
Nota di contenuto: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Regulations and Other Developments/ Trends/Initiatives Driving Non-Halogenated Flame Retardant Use -- 1.1 Regulatory History of Halogenated vs. Non-Halogenated Flame Retardants -- 1.2 Regulations of Fire Safety and Flame Retardant Chemicals -- 1.3 Current Regulations -- 1.3.1 International - United Nations -- 1.3.2 United States (Federal vs. State) -- 1.3.3 Canada -- 1.3.4 European Union -- 1.3.5 Asia -- 1.3.6 China -- 1.3.7 Japan -- 1.3.8 Korea -- 1.3.9 Australia -- 1.4 Fire Safety and Non-Fire Safety Issues Requiring Non-Halogenated Flame Retardants -- 1.5 Regulatory Outlook and Future Market Drivers -- References -- 2 Phosphorus-Based Flame Retardants -- 2.1 Introduction -- 2.2 Main Classes of Phosphorus-Based Flame Retardants -- 2.3 Red Phosphorus -- 2.4 Ammonium and Amine Phosphates -- 2.5 Metal Hypophosphites, Phosphites and Dialkyl Phosphinates -- 2.6 Aliphatic Phosphates and Phosphonates -- 2.7 Aromatic Phosphates and Phosphonates -- 2.8 Aromatic Phosphinates -- 2.9 Phosphine Oxides -- 2.10 Phosphazenes -- 2.11 Environmental Fate and Exposure to Organophosphorus FRs -- 2.12 Conclusions and Further Trends -- References -- 3 Mineral Filler Flame Retardants -- 3.1 Introduction -- 3.2 Industrial Importance of Mineral Flame Retardants -- 3.2.1 Market Share of Mineral FRs -- 3.2.2 Synthetic Mineral FRs within the Industrial Chemical Process Chain -- 3.2.3 Natural Mineral FRs -- 3.3 Overview of Mineral Filler FRs -- 3.3.1 Mineral Filler Flame Retardants by Chemistry -- 3.3.2 Classification by Production Process -- 3.3.2.1 Crushing and Grinding -- 3.3.2.2 Air Classification -- 3.3.2.3 Precipitation and Their Synthetic Processes -- 3.3.2.4 Surface Treatment -- 3.3.3 Physical Characterisation of Mineral FRs.
3.3.3.1 Particle Shape/Morphology/Aspect Ratio -- 3.3.3.2 Particle Size Distribution -- 3.3.3.3 Sieve Residue -- 3.3.3.4 BET Surface Area -- 3.3.3.5 Oil Absorption -- 3.3.3.6 pH-Value/Specific Conductivity -- 3.3.3.7 Bulk Density and Powder Flowability -- 3.3.3.8 Thermal Stability/Loss on Ignition/Endothermic Heat -- 3.3.4 General Impact of Mineral FRs on Polymer Material Properties -- 3.3.4.1 Optical Properties -- 3.3.4.2 Mechanical Properties -- 3.3.4.3 Water Uptake and Chemical Resistance -- 3.3.4.4 Thermal Properties -- 3.3.4.5 Electrical Properties -- 3.3.4.6 Rheological Properties -- 3.4 Working Principle of Hydrated Mineral Flame Retardants -- 3.4.1 Filler Loading, Flammability and Flame Propagation -- 3.4.2 Smoke Suppression -- 3.4.3 Heat Release -- 3.5 Thermoplastic and Elastomeric Applications -- 3.5.1 Compounding Technology -- 3.5.2 Compound Formulation Principals -- 3.5.3 Wire & -- Cable -- 3.5.4 Other Construction Products -- 3.5.5 Special Applications -- 3.5.6 Engineering Plastics for E& -- E Applications -- 3.6 Reactive Resins/Thermoset Applications -- 3.6.1 Production Processes for Glass Fiber-Reinforced Polymer Composite -- 3.6.1.1 Paste Production -- 3.6.1.2 Hand Lamination/Hand-Lay-Up -- 3.6.1.3 SMC and BMC -- 3.6.1.4 Pultrusion -- 3.6.1.5 RTM/RIM -- 3.6.2 Formulation Principles -- 3.6.3 Public Transport Applications of GFRP -- 3.6.4 E& -- E Applications -- 3.6.5 Construction and Industrial Applications -- 3.7 Conclusion, Trends and Challenges -- References -- 4 Intumescence-Based Flame Retardant -- 4.1 Introduction -- 4.2 Fundamentals of Intumescence -- 4.3 Intumescence on the Market -- 4.4 Reaction to Fire of Intumescent Materials -- 4.5 Resistance to Fire of Intumescent Materials -- 4.6 Conclusion and Future Trends -- References -- 5 Nitrogen-Based Flame Retardants -- 5.1 Introduction.
5.2 Main Types of Nitrogen-Based Flame Retardants -- 5.3 Ammonia-Based Flame Retardants -- 5.3.1 Ammonium Polyphosphate -- 5.3.2 Other Ammonia Salts -- 5.4 Melamine-Based Flame Retardants -- 5.4.1 Melamine as Flame Retardant -- 5.4.2 Melamine Salts -- 5.4.3 Melamine Cyanurate -- 5.4.4 Melamine Polyphosphate -- 5.4.5 Melamine Condensates and Its Salts -- 5.5 Nitrogen-Based Radical Generators -- 5.6 Phosphazenes, Phospham and Phosphoroxynitride -- 5.7 Cyanuric-Acid Based Flame Retardants -- 5.8 Summary and Conclusion -- References -- 6 Silicon-Based Flame Retardants -- 6.1 Introduction -- 6.2 Basics of Silicon Chemistry -- 6.3 Industrial Applications of Silicones -- 6.4 Silicon-Based Materials as Flame Retardant Materials -- 6.4.1 Inorganic Silicon-Based Flame Retardants -- 6.4.1.1 Silicon Dioxide (SiO2) (Silica) -- 6.4.1.2 Wollastonite -- 6.4.1.3 Magadiite -- 6.4.1.4 Sepiolite -- 6.4.1.5 Kaolin -- 6.4.1.6 Mica -- 6.4.1.7 Talc -- 6.4.1.8 Halloysite -- 6.4.1.9 Layered Silicate Nanocomposites -- 6.4.1.10 Sodium Silicate -- 6.4.1.11 Silsesquioxane -- 6.4.2 Organic Silicone-Based Flame Retardants -- 6.4.2.1 Polyorganosiloxanes -- 6.4.2.2 Silanes -- 6.4.3 Other Silicone-Based Flame Retardants -- 6.4.4 Silicone/Silica Protective Coatings -- 6.5 Mode of Actions of Silicone-Based Flame Retardants and Practical Use Considerations -- 6.5.1 Silicon Dioxide -- 6.5.2 Silicate-Based Minerals -- 6.5.3 Silicones -- 6.6 Future Trends in Silicon-Based Flame Retardants -- 6.7 Summary and Conclusions -- References -- 7 Boron-Based Flame Retardants in Non-Halogen Based Polymers -- 7.1 Introduction -- 7.2 Major Functions of Borates in Flame Retardancy -- 7.3 Major Commercial Boron-Based Flame Retardants and Their Applications -- 7.4 Properties and Applications of Boron-Base Flame Retardants -- 7.4.1 Boric Acid [B2O3·3H2O/B(OH)3], Boric Oxide (B2O3).
7.4.2 Alkaline Metal Borate -- 7.4.2.1 Borax Pentahydrate (Na2O·2B2O3·5H2O), Borax Decahydrate (Na2O·2B2O3·10H2O) -- 7.4.2.2 Disodium Octaborate Tetrahydrate (Na2O·4B2O3·4H2O) -- 7.4.3 Alkaline-Earth Metal Borate -- 7.4.3.1 Calcium Borates (xCaO·yB2O3·zH2O) -- 7.4.3.2 Magnesium Borate (xMgO·yB2O3·zH2O) -- 7.4.4 Transition Metal Borates -- 7.4.4.1.1 Firebrake ZB (2ZnO·3B2O3·3.5H2O) and Firebrake 500 (2ZnO·3B2O3) -- 7.4.4.1.2 Miscellaneous Metal Borates -- 7.4.6 Phosphorus-Containing Borates -- 7.4.6.1 Boron Phosphate (BPO4) -- 7.4.6.2 Metal Borophosphate -- 7.4.7 Silicon-Containing Borates -- 7.4.7.1 Borosilicate Glass and Frits -- 7.4.8 Carbon-Containing Boron or Borates -- 7.4.8.1 Graphene (Boron-Doped) -- 7.4.8.2 Boric Acid Esters [B(OR)3] -- 7.4.8.3 Boronic Acid [ArB(OH)2] -- 7.4.8.4 Boron Carbide (B4C) -- 7.5 Mode of Actions of Boron-Based Flame Retardants -- 7.6 Conclusions -- References -- 8 Non-Halogenated Conformal Flame Retardant Coatings -- List of Acronyms -- 8.1 Introduction to Conformal Coatings: The Role of Surface During Combustion -- 8.2 Fabrics -- 8.2.1 Natural Fabrics -- 8.2.2 Synthetic Fabrics and Blends -- 8.2.3 Process Equipment and Related Patents -- 8.3 Porous Materials -- 8.3.1 Open Cell PU Foams -- 8.3.2 Other Porous Substrates -- 8.3.3 Process Equipment and Related Patents -- 8.4 Other Substrates -- 8.5 Future Trends and Needs -- References -- 9 Multicomponent Flame Retardants -- 9.1 The Need for Multicomponent Flame Retardants -- 9.2 Concepts -- 9.3 Combination with Fillers -- 9.4 Adjuvants -- 9.5 Synergists -- 9.6 Combinations of Different Flame Retardants -- 9.7 Combinations of Different Flame-Retardant Groups in One Flame Retardant -- 9.8 Conclusion -- References -- 10 Other Non-Halogenated Flame Retardants and Future Fire Protection Concepts & -- Needs -- 10.1 The Periodic Table of Flame Retardants.
10.2 Transition Metal Flame Retardants -- 10.2.1 Vapor Phase Transition Metal Flame Retardants -- 10.2.2 Condensed Phase Transition Metal Flame Retardants -- 10.2.2.1 Metal Oxides -- 10.2.2.2 Metal Complexes -- 10.3 Sulfur-Based Flame Retardants -- 10.4 Carbon-Based Flame Retardants -- 10.4.1 Cross-Linking Compounds - Alkynes, Deoxybenzoin, Friedel-Crafts, Nitriles, Anhydrides -- 10.4.1.1 Alkynes -- 10.4.1.2 Deoxybenzoin -- 10.4.1.3 Friedel-Crafts -- 10.4.1.4 Nitriles -- 10.4.1.5 Anhydrides -- 10.4.2 Organic Carbonates -- 10.4.3 Graft Copolymerization -- 10.4.4 Expandable Graphite -- 10.5 Bio-Based Materials -- 10.6 Tin-Based Flame Retardants -- 10.6.1 Introduction -- 10.6.2 Zinc Stannates -- 10.6.3 Halogen-Free Applications -- 10.6.3.1 Polyolefins -- 10.6.3.2 Styrenics -- 10.6.3.3 Engineering Plastics -- 10.6.3.4 Thermosetting Resins -- 10.6.3.5 Elastomers -- 10.6.3.6 Paints and Coatings -- 10.6.3.7 Textiles -- 10.6.4 Novel Tin Additives -- 10.6.4.1 Coated Fillers -- 10.6.4.2 Tin-Modified Nanoclays -- 10.6.4.3 Mechanism of Action -- 10.6.4.4 Summary -- 10.7 Polymer Nanocomposites -- 10.8 Engineering Non-Hal FR Solutions -- 10.8.1 Barrier Fabrics -- 10.8.2 Coatings -- 10.8.2.1 Inorganic Coatings -- 10.8.2.2 IR Reflective Coatings -- 10.8.2.3 Nanoparticle Coatings -- 10.8.2.4 Conformal/Integrated Coatings -- 10.9 Future Directions -- 10.9.1 Polymeric Flame Retardants and Reactive Flame Retardants -- 10.9.2 End of Life Considerations For Flame Retardants -- 10.9.3 New and Growing Fire Risk Scenarios -- 10.9.4 Experimental Methodology for Flame Retardant Screening -- References -- Index -- EULA.
Titolo autorizzato: Non-Halogenated Flame Retardant Handbook  Visualizza cluster
ISBN: 1-119-75206-X
1-119-75224-8
1-119-75221-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555244603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui