Vai al contenuto principale della pagina

Hybrid cardiac imaging / / Stephan G. Nekolla, Christoph Rischpler, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Hybrid cardiac imaging / / Stephan G. Nekolla, Christoph Rischpler, editors Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (305 pages)
Disciplina: 616.120754
Soggetto topico: Heart - Imaging
Persona (resp. second.): RischplerChristoph
NekollaStephan G.
Nota di contenuto: Intro -- Preface -- Contents -- Part I: Generic Aspects of Hybrid Imaging -- 1: Hybrid Imaging and Healthcare Economics -- 1.1 Hybrid Imaging in Stable CAD (SCAD): CTCA and MPI -- 1.2 Health-Economic Implications -- 1.3 Hybrid PET-MRI and Health-Economics Implications -- References -- 2: Industry Perspective on Hybrid Cardiac Imaging -- 2.1 Introduction -- 2.2 Ultra-Fast Cardiac Cameras Based on CZT Technology -- 2.3 Pinhole Imaging -- 2.4 Hybrid Imaging for Dedicated Cardiac SPECT Cameras -- References -- 3: Global and Regional Peculiarities: The IAEA Perspective -- 3.1 Introduction -- 3.2 Health Expenditures -- 3.3 The Challenge of Introducing Newer Technologies -- 3.4 Diagnostic Efficacy and Cost Effectiveness -- 3.5 Economic Evidence on the Use of Nuclear Cardiology -- 3.6 The Program in Human Health of the IAEA to Support Nuclear Medicine and Hybrid Imaging -- 3.7 Human Resources Capacity Building -- 3.8 The Growth of Hybrid Imaging in Developing World -- 3.9 Assessment of the Utilization of Hybrid Imaging Worldwide -- References -- Part II: SPECT/CT -- 4: Perfusion, Calcium Scoring, and CTA -- 4.1 Coronary Dominancy and Variations -- 4.2 Calcium Scoring and Assessment of Plaque and Stenosis -- 4.3 Myocardial CT Perfusion by Dynamic CTA -- 4.4 Hybrid Analysis and Image Fusion (SPECT or PET and CTA) -- 4.5 Future Direction and Visions -- References -- 5: Hybrid Imaging of the Autonomic Cardiac Nervous System -- 5.1 Introduction -- 5.2 Cardiac Sympathetic Nervous System Imaging -- 5.3 SPECT and PET Tracers -- 5.3.1 Presynaptic -- 5.3.2 Post-synaptic -- 5.4 Principles in Analysis, Quantification, and Software -- 5.5 Clinical Applications -- 5.5.1 ANS and Myocardial Ischemia and Infarction and Heart Failure (CMP)/Heart Transplantation -- 5.5.2 Long QT, Brugada, ARVD Detection.
5.5.3 Predicting Ventricular Arrhythmias and Sudden Cardiac Death with ANS Imaging -- 5.5.4 ANS and Cardiac Resynchronization -- 5.5.5 ANS and Cardiac Amyloidosis -- 5.5.6 ANS and DM -- 5.6 Conclusion and Future Perspectives -- 5.6.1 Potential Novel Tracers -- 5.6.2 Role of PET/MR -- 5.6.3 New Clinical Trial -- 5.6.4 Clinical Implementation -- 5.7 Conclusion -- References -- 6: Dyssynchrony -- 6.1 Assessment of Left Ventricular Dyssynchrony by SPECT -- 6.2 Dyssynchrony as a Guide for Cardiac Resynchronization Therapy -- 6.3 Dyssynchrony as a Guide for Implantable Cardioverter Defibrillator -- 6.4 Value of Dyssynchrony in Ischemic Heart Disease -- 6.5 Technical Considerations in the Assessment of Dyssynchrony by SPECT -- References -- 7: Novel Techniques: Solid-State Detectors, Dose Reduction (SPECT/CT) -- 7.1 Introduction -- 7.2 Technology -- 7.2.1 Solid-State Detectors -- 7.3 Dedicated Cardiac Systems -- 7.3.1 Detectors -- 7.3.2 Dedicated Cardiac Collimators and Geometries -- 7.4 SPECT/CT -- 7.5 Solid-State SPECT/CT Systems -- 7.6 Reconstruction Including Resolution Recovery and Anatomical Constraints -- 7.6.1 Performance -- 7.7 Impact on the Field -- 7.7.1 Current Clinical Use -- 7.8 Clinical Protocols -- 7.8.1 Two-Position Imaging: Upright/Supine or Supine/Prone -- 7.8.2 Low-Dose Protocols -- 7.9 Simultaneous Dual-Isotope MPI -- 7.10 Normal Perfusion Limits for Solid-State Cameras -- 7.10.1 Combined Quantification from Two Positions -- 7.11 Motion Correction on Solid-State Cameras -- 7.12 Potential Pitfalls -- 7.13 Emerging Clinical Techniques -- 7.13.1 SPECT Myocardial Blood Flow -- 7.13.2 Early EF -- 7.13.3 Large-Scale Clinical Validation -- 7.14 Future Hardware Designs -- 7.15 Summary -- References -- Part III: PET/CT -- 8: Myocardial Blood Flow Quantification with PET/CT: Applications.
8.1 Introduction -- 8.2 Coronary Circulation -- 8.3 Pre-clinical Experience/Validation Studies -- 8.4 Myocardial Blood Flow with PET: Reference Values -- 8.5 MBF and CFR in Ischemic Heart Disease -- 8.6 Relationship of CFR with FFR in Ischemic Heart Disease -- 8.7 Prognostic Value of Stress MBF and CFR for Risk Stratification -- 8.8 Summary -- References -- 9: Hybrid PET-CT Evaluation of Myocardial Viability -- 9.1 Background -- 9.2 Patterns of Viability by PET -- 9.3 Metabolic Considerations -- 9.4 Protocols for Assessment of Myocardial Viability by FDG -- 9.5 Diagnostic Accuracy of FDG Myocardial Viability Assessment -- 9.6 Prognostic Implications of FDG Myocardial Viability Assessment -- 9.7 FDG Myocardial Viability Assessment for Guiding Therapeutic Decision -- 9.8 Hybrid PET-Computed Tomography for Myocardial Viability Assessment -- 9.9 Conclusions -- References -- 10: Myocardial Inflammation: Focus on Cardiac Sarcoidosis -- 10.1 Introduction -- 10.2 Sarcoidosis Overview -- 10.2.1 Epidemiology and Demographics -- 10.2.2 Epidemiology and Demographics -- 10.2.3 Cardiac Sarcoidosis -- 10.3 Cardiac Sarcoidosis Diagnosis -- 10.3.1 Pathology -- 10.3.2 Imaging -- 10.4 Imaging Methods -- 10.4.1 Cardiac MRI -- 10.4.2 PET -- 10.4.3 Patient Preparation for FDG Myocardial Inflammation PET -- 10.4.4 Myocardial Inflammation PET Imaging Protocol -- 10.4.5 PET Image Interpretation -- 10.4.6 Pitfalls in FDG Image Interpretation -- 10.4.7 Hybrid Imaging -- 10.5 Role of Imaging -- 10.5.1 Cardiac Sarcoid Diagnosis -- 10.5.2 Prognosis -- 10.5.3 Response Assessment -- 10.6 Guidelines -- 10.7 Future Directions for Myocardial Inflammation PET -- 10.8 Conclusions -- References -- 11: Novel SPECT and PET Tracers and Myocardial Imaging -- 11.1 Overview -- 11.2 Physiological Imaging -- 11.2.1 Myocardial Perfusion Imaging.
11.2.1.1 SPECT Perfusion Imaging -- 11.2.1.2 PET Perfusion Imaging -- 11.3 Targeted Molecular Imaging -- 11.3.1 Inflammation -- 11.3.1.1 SPECT Radiotracers -- 11.3.1.2 PET Radiotracers -- 11.3.2 Cell Death -- 11.3.2.1 Apoptosis Imaging -- 11.3.2.2 Cell Necrosis Imaging -- 11.4 Sympathetic and Parasympathetic Imaging -- 11.5 Sympathetic Imaging -- 11.5.1 SPECT Radiotracers -- 11.5.2 PET Radiotracers -- 11.6 Clinical Applications of SNS Imaging -- 11.7 Parasympathetic Imaging -- 11.7.1 Angiogenesis -- 11.7.1.1 αvβ3 Integrin Targeted Imaging -- 11.7.1.2 Vascular Endothelial Growth Factor (VEGF) and Endothelial Cell Imaging -- 11.8 Imaging Fibrosis and Extracellular Matrix (ECM) -- 11.8.1 Clinical Applications -- 11.8.1.1 Imaging Somatostatin Receptor -- 11.8.1.2 Imaging Integrins -- 11.8.1.3 Imaging Collagen -- 11.8.1.4 Imaging of Extracellular Matrix Proteases -- 11.9 Monitoring Cell and Gene-Based Therapies with Novel Reporter Probe Imaging -- 11.9.1 Direct Labeling -- 11.9.2 Reporter Genes -- 11.10 Theranostics -- References -- Part IV: PET/MR -- 12: PET/MR: Perfusion and Viability -- 12.1 Introduction -- 12.2 Technical Specialities of PET/MRI Systems -- 12.3 Myocardial Perfusion Imaging -- 12.4 Myocardial Viability Imaging -- 12.5 Conclusion -- References -- 13: PET/MRI: "Inflammation" -- 13.1 Introduction: A Brief History of Hybridization -- 13.2 Challenges to PET/MRI -- 13.2.1 Technical Issues -- 13.2.1.1 Hardware Incompatibilities -- 13.2.1.2 Attenuation Correction -- 13.2.1.3 Motion Correction -- 13.2.1.4 Magnet Bore and FOV -- 13.2.1.5 Software Considerations -- 13.2.2 Patient/Workflow Issues -- 13.2.3 Personnel Issues -- 13.2.4 Cost -- 13.3 Advantages of PET/MRI -- 13.3.1 Compared to Separate PET and MRI -- 13.3.2 Compared to PET/CT -- 13.4 Applications of PET/MRI in Inflammatory Heart Disease.
13.4.1 Sarcoidosis -- 13.4.1.1 Background -- The Hybrid Approach -- 13.4.2 Myocarditis -- 13.4.3 Endocarditis -- 13.4.4 Atherosclerotic Plaque Risk Stratification -- 13.4.5 Preclinical Applications -- 13.5 Acquisition Protocol and Patient Preparation -- 13.5.1 Inflammation Protocol -- 13.6 Study Interpretation and Reporting -- 13.7 Future Directions -- References -- 14: Innovations in Cardiovascular MR and PET-MR Imaging -- 14.1 Introduction -- 14.2 Innovations in Cardiac MR: Quantitative Cardiac MRI -- 14.2.1 Cardiac T1 and T2 mapping -- 14.2.2 Cardiac MR Fingerprinting -- 14.2.3 Cardiovascular MRI Multitasking -- 14.3 Innovations in Cardiac MR: Towards Efficient 3D Whole-Heart Imaging -- 14.3.1 Dealing with Physiological Motion -- 14.3.2 Accelerating Data Acquisition -- 14.3.3 Coronary MR Imaging -- 14.3.4 Myocardial Viability MR Imaging -- 14.3.5 Multi-Contrast Whole-Heart MR Imaging -- 14.3.6 Whole-Heart Quantitative T1 and T2 Mapping -- 14.4 Innovations in Cardiac PET-MR Imaging -- 14.4.1 Motion-Compensated Cardiac PET-MR Imaging -- 14.4.1.1 Respiratory Motion Compensation -- 14.4.1.2 Cardiac Motion Compensation -- 14.4.1.3 Respiratory and Cardiac Motion Compensation -- 14.4.2 Novel PET Radiotracers for Clinical Cardiac PET-MR Applications -- 14.5 Concluding Remarks -- References.
Titolo autorizzato: Hybrid Cardiac Imaging  Visualizza cluster
ISBN: 3-030-83167-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910523804503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui