1.

Record Nr.

UNINA9910523804503321

Titolo

Hybrid cardiac imaging / / Stephan G. Nekolla, Christoph Rischpler, editors

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-030-83167-1

Descrizione fisica

1 online resource (305 pages)

Disciplina

616.120754

Soggetti

Heart - Imaging

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Contents -- Part I: Generic Aspects of Hybrid Imaging -- 1: Hybrid Imaging and Healthcare Economics -- 1.1  Hybrid Imaging in Stable CAD (SCAD): CTCA and MPI -- 1.2  Health-Economic Implications -- 1.3  Hybrid PET-MRI and Health-Economics Implications -- References -- 2: Industry Perspective on Hybrid Cardiac Imaging -- 2.1  Introduction -- 2.2  Ultra-Fast Cardiac Cameras Based on CZT Technology -- 2.3  Pinhole Imaging -- 2.4  Hybrid Imaging for Dedicated Cardiac SPECT Cameras -- References -- 3: Global and Regional Peculiarities: The IAEA Perspective -- 3.1  Introduction -- 3.2  Health Expenditures -- 3.3  The Challenge of Introducing Newer Technologies -- 3.4  Diagnostic Efficacy and Cost Effectiveness -- 3.5  Economic Evidence on the Use of Nuclear Cardiology -- 3.6  The Program in Human Health of the IAEA to Support Nuclear Medicine and Hybrid Imaging -- 3.7  Human Resources Capacity Building -- 3.8  The Growth of Hybrid Imaging in Developing World -- 3.9  Assessment of the Utilization of Hybrid Imaging Worldwide -- References -- Part II: SPECT/CT -- 4: Perfusion, Calcium Scoring, and CTA -- 4.1  Coronary Dominancy and Variations -- 4.2  Calcium Scoring and Assessment of Plaque and Stenosis -- 4.3  Myocardial CT Perfusion by Dynamic CTA -- 4.4  Hybrid Analysis and Image Fusion (SPECT or PET and CTA) -- 4.5  Future Direction and Visions -- References -- 5: Hybrid Imaging of the Autonomic Cardiac Nervous System -- 5.1  Introduction -- 5.2  Cardiac Sympathetic Nervous System Imaging -- 5.3  SPECT and PET



Tracers -- 5.3.1  Presynaptic -- 5.3.2  Post-synaptic -- 5.4  Principles in Analysis, Quantification, and Software -- 5.5  Clinical Applications -- 5.5.1  ANS and Myocardial Ischemia and Infarction and Heart Failure (CMP)/Heart Transplantation -- 5.5.2  Long QT, Brugada, ARVD Detection.

5.5.3  Predicting Ventricular Arrhythmias and Sudden Cardiac Death with ANS Imaging -- 5.5.4  ANS and Cardiac Resynchronization -- 5.5.5  ANS and Cardiac Amyloidosis -- 5.5.6  ANS and DM -- 5.6  Conclusion and Future Perspectives -- 5.6.1  Potential Novel Tracers -- 5.6.2  Role of PET/MR -- 5.6.3  New Clinical Trial -- 5.6.4  Clinical Implementation -- 5.7  Conclusion -- References -- 6: Dyssynchrony -- 6.1  Assessment of Left Ventricular Dyssynchrony by SPECT -- 6.2  Dyssynchrony as a Guide for Cardiac Resynchronization Therapy -- 6.3  Dyssynchrony as a Guide for Implantable Cardioverter Defibrillator -- 6.4  Value of Dyssynchrony in Ischemic Heart Disease -- 6.5  Technical Considerations in the Assessment of Dyssynchrony by SPECT -- References -- 7: Novel Techniques: Solid-State Detectors, Dose Reduction (SPECT/CT) -- 7.1  Introduction -- 7.2  Technology -- 7.2.1  Solid-State Detectors -- 7.3  Dedicated Cardiac Systems -- 7.3.1  Detectors -- 7.3.2  Dedicated Cardiac Collimators and Geometries -- 7.4  SPECT/CT -- 7.5  Solid-State SPECT/CT Systems -- 7.6  Reconstruction Including Resolution Recovery and Anatomical Constraints -- 7.6.1  Performance -- 7.7  Impact on the Field -- 7.7.1  Current Clinical Use -- 7.8  Clinical Protocols -- 7.8.1  Two-Position Imaging: Upright/Supine or Supine/Prone -- 7.8.2  Low-Dose Protocols -- 7.9  Simultaneous Dual-Isotope MPI -- 7.10  Normal Perfusion Limits for Solid-State Cameras -- 7.10.1  Combined Quantification from Two Positions -- 7.11  Motion Correction on Solid-State Cameras -- 7.12  Potential Pitfalls -- 7.13  Emerging Clinical Techniques -- 7.13.1  SPECT Myocardial Blood Flow -- 7.13.2  Early EF -- 7.13.3  Large-Scale Clinical Validation -- 7.14  Future Hardware Designs -- 7.15  Summary -- References -- Part III: PET/CT -- 8: Myocardial Blood Flow Quantification with PET/CT: Applications.

8.1  Introduction -- 8.2  Coronary Circulation -- 8.3  Pre-clinical Experience/Validation Studies -- 8.4  Myocardial Blood Flow with PET: Reference Values -- 8.5  MBF and CFR in Ischemic Heart Disease -- 8.6  Relationship of CFR with FFR in Ischemic Heart Disease -- 8.7  Prognostic Value of Stress MBF and CFR for Risk Stratification -- 8.8  Summary -- References -- 9: Hybrid PET-CT Evaluation of Myocardial Viability -- 9.1  Background -- 9.2  Patterns of Viability by PET -- 9.3  Metabolic Considerations -- 9.4  Protocols for Assessment of Myocardial Viability by FDG -- 9.5  Diagnostic Accuracy of FDG Myocardial Viability Assessment -- 9.6  Prognostic Implications of FDG Myocardial Viability Assessment -- 9.7  FDG Myocardial Viability Assessment for Guiding Therapeutic Decision -- 9.8  Hybrid PET-Computed Tomography for Myocardial Viability Assessment -- 9.9  Conclusions -- References -- 10: Myocardial Inflammation: Focus on Cardiac Sarcoidosis -- 10.1  Introduction -- 10.2  Sarcoidosis Overview -- 10.2.1  Epidemiology and Demographics -- 10.2.2  Epidemiology and Demographics -- 10.2.3  Cardiac Sarcoidosis -- 10.3  Cardiac Sarcoidosis Diagnosis -- 10.3.1  Pathology -- 10.3.2  Imaging -- 10.4  Imaging Methods -- 10.4.1  Cardiac MRI -- 10.4.2  PET -- 10.4.3  Patient Preparation for FDG Myocardial Inflammation PET -- 10.4.4  Myocardial Inflammation PET Imaging Protocol -- 10.4.5  PET Image Interpretation -- 10.4.6  Pitfalls in FDG Image Interpretation -- 10.4.7  Hybrid Imaging -- 10.5  Role of Imaging -- 10.5.1  Cardiac Sarcoid Diagnosis -- 10.5.2  Prognosis -- 10.5.3  Response Assessment -- 10.6  Guidelines -- 10.7  Future Directions



for Myocardial Inflammation PET -- 10.8  Conclusions -- References -- 11: Novel SPECT and PET Tracers and Myocardial Imaging -- 11.1  Overview -- 11.2  Physiological Imaging -- 11.2.1  Myocardial Perfusion Imaging.

11.2.1.1  SPECT Perfusion Imaging -- 11.2.1.2  PET Perfusion Imaging -- 11.3  Targeted Molecular Imaging -- 11.3.1  Inflammation -- 11.3.1.1  SPECT Radiotracers -- 11.3.1.2  PET Radiotracers -- 11.3.2  Cell Death -- 11.3.2.1  Apoptosis Imaging -- 11.3.2.2  Cell Necrosis Imaging -- 11.4  Sympathetic and Parasympathetic Imaging -- 11.5  Sympathetic Imaging -- 11.5.1  SPECT Radiotracers -- 11.5.2  PET Radiotracers -- 11.6  Clinical Applications of SNS Imaging -- 11.7  Parasympathetic Imaging -- 11.7.1  Angiogenesis -- 11.7.1.1  αvβ3 Integrin Targeted Imaging -- 11.7.1.2  Vascular Endothelial Growth Factor (VEGF) and Endothelial Cell Imaging -- 11.8  Imaging Fibrosis and Extracellular Matrix (ECM) -- 11.8.1  Clinical Applications -- 11.8.1.1  Imaging Somatostatin Receptor -- 11.8.1.2  Imaging Integrins -- 11.8.1.3  Imaging Collagen -- 11.8.1.4  Imaging of Extracellular Matrix Proteases -- 11.9  Monitoring Cell and Gene-Based Therapies with Novel Reporter Probe Imaging -- 11.9.1  Direct Labeling -- 11.9.2  Reporter Genes -- 11.10  Theranostics -- References -- Part IV: PET/MR -- 12: PET/MR: Perfusion and Viability -- 12.1  Introduction -- 12.2  Technical Specialities of PET/MRI Systems -- 12.3  Myocardial Perfusion Imaging -- 12.4  Myocardial Viability Imaging -- 12.5  Conclusion -- References -- 13: PET/MRI: "Inflammation" -- 13.1  Introduction: A Brief History of Hybridization -- 13.2  Challenges to PET/MRI -- 13.2.1  Technical Issues -- 13.2.1.1  Hardware Incompatibilities -- 13.2.1.2  Attenuation Correction -- 13.2.1.3  Motion Correction -- 13.2.1.4  Magnet Bore and FOV -- 13.2.1.5  Software Considerations -- 13.2.2  Patient/Workflow Issues -- 13.2.3  Personnel Issues -- 13.2.4  Cost -- 13.3  Advantages of PET/MRI -- 13.3.1  Compared to Separate PET and MRI -- 13.3.2  Compared to PET/CT -- 13.4  Applications of PET/MRI in Inflammatory Heart Disease.

13.4.1  Sarcoidosis -- 13.4.1.1  Background -- The Hybrid Approach -- 13.4.2  Myocarditis -- 13.4.3  Endocarditis -- 13.4.4  Atherosclerotic Plaque Risk Stratification -- 13.4.5  Preclinical Applications -- 13.5  Acquisition Protocol and Patient Preparation -- 13.5.1  Inflammation Protocol -- 13.6  Study Interpretation and Reporting -- 13.7  Future Directions -- References -- 14: Innovations in Cardiovascular MR and PET-MR Imaging -- 14.1  Introduction -- 14.2  Innovations in Cardiac MR: Quantitative Cardiac MRI -- 14.2.1  Cardiac T1 and T2 mapping -- 14.2.2  Cardiac MR Fingerprinting -- 14.2.3  Cardiovascular MRI Multitasking -- 14.3  Innovations in Cardiac MR: Towards Efficient 3D Whole-Heart Imaging -- 14.3.1  Dealing with Physiological Motion -- 14.3.2  Accelerating Data Acquisition -- 14.3.3  Coronary MR Imaging -- 14.3.4  Myocardial Viability MR Imaging -- 14.3.5  Multi-Contrast Whole-Heart MR Imaging -- 14.3.6  Whole-Heart Quantitative T1 and T2 Mapping -- 14.4  Innovations in Cardiac PET-MR Imaging -- 14.4.1  Motion-Compensated Cardiac PET-MR Imaging -- 14.4.1.1  Respiratory Motion Compensation -- 14.4.1.2  Cardiac Motion Compensation -- 14.4.1.3  Respiratory and Cardiac Motion Compensation -- 14.4.2  Novel PET Radiotracers for Clinical Cardiac PET-MR Applications -- 14.5  Concluding Remarks -- References.