Vai al contenuto principale della pagina

Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals / / Sergey Kislyakov, Natan Kruglyak



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kislyakov Sergey Visualizza persona
Titolo: Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals / / Sergey Kislyakov, Natan Kruglyak Visualizza cluster
Pubblicazione: New York, : Springer, 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (319 p.)
Disciplina: 515.2433
Soggetto topico: Interpolation
Interpolation spaces
Altri autori: KruglyakNatan  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Preface -- Introduction -- Definitions, notation, and some standard facts -- Part 1. Background -- Chapter 1. Classical Calderón–Zygmund decomposition and real interpolation -- Chapter 2. Singular integrals -- Chapter 3. Classical covering theorems -- Chapter 4. Spaces of smooth functions and operators on them -- Chapter 5. Some topics in interpolation -- Chapter 6. Regularization for Banach spaces -- Chapter 7. Stability for analytic Hardy spaces -- Part 2. Advanced theory -- Chapter 8. Controlled coverings -- Chapter 9. Construction of near-minimizers -- Chapter 10. Stability of near-minimizers -- Chapter 11. The omitted case of a limit exponent -- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel–Lizorkin spaces -- Notes and remarks -- Bibliography -- Index.
Sommario/riassunto: In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.
Titolo autorizzato: Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals  Visualizza cluster
ISBN: 1-283-90994-4
3-0348-0469-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910438140903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Monografie Matematyczne, . 0077-0507 ; ; 74