|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910438140903321 |
|
|
Autore |
Kislyakov Sergey |
|
|
Titolo |
Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals / / Sergey Kislyakov, Natan Kruglyak |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Springer, 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-283-90994-4 |
3-0348-0469-5 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (319 p.) |
|
|
|
|
|
|
Collana |
|
Monografie matematyczne ; ; v. 74 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Interpolation |
Interpolation spaces |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- Introduction -- Definitions, notation, and some standard facts -- Part 1. Background -- Chapter 1. Classical Calderón–Zygmund decomposition and real interpolation -- Chapter 2. Singular integrals -- Chapter 3. Classical covering theorems -- Chapter 4. Spaces of smooth functions and operators on them -- Chapter 5. Some topics in interpolation -- Chapter 6. Regularization for Banach spaces -- Chapter 7. Stability for analytic Hardy spaces -- Part 2. Advanced theory -- Chapter 8. Controlled coverings -- Chapter 9. Construction of near-minimizers -- Chapter 10. Stability of near-minimizers -- Chapter 11. The omitted case of a limit exponent -- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel–Lizorkin spaces -- Notes and remarks -- Bibliography -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund |
|
|
|
|