Vai al contenuto principale della pagina

Mathematical Foundations of Nature-Inspired Algorithms / / by Xin-She Yang, Xing-Shi He



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Yang Xin-She Visualizza persona
Titolo: Mathematical Foundations of Nature-Inspired Algorithms / / by Xin-She Yang, Xing-Shi He Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (114 pages)
Disciplina: 004.678015118
004.678
Soggetto topico: Mathematical optimization
Numerical analysis
Markov processes
Algorithms
Optimization
Numerical Analysis
Markov model
Persona (resp. second.): HeXing-Shi
Nota di contenuto: 1 Introduction to Optimization -- 2 Nature-Inspired Algorithms -- 3 Mathematical Foundations -- 4 Mathematical Analysis I -- 5 Mathematical Analysis II.
Sommario/riassunto: This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
Titolo autorizzato: Mathematical Foundations of Nature-Inspired Algorithms  Visualizza cluster
ISBN: 3-030-16936-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910338246303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Optimization, . 2190-8354