LEADER 03535nam 22006015 450 001 9910338246303321 005 20220322172606.0 010 $a3-030-16936-7 024 7 $a10.1007/978-3-030-16936-7 035 $a(CKB)4100000008153893 035 $a(MiAaPQ)EBC5771270 035 $a(DE-He213)978-3-030-16936-7 035 $a(PPN)236523600 035 $a(EXLCZ)994100000008153893 100 $a20190508d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematical Foundations of Nature-Inspired Algorithms /$fby Xin-She Yang, Xing-Shi He 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (114 pages) 225 1 $aSpringerBriefs in Optimization,$x2190-8354 311 $a3-030-16935-9 327 $a1 Introduction to Optimization -- 2 Nature-Inspired Algorithms -- 3 Mathematical Foundations -- 4 Mathematical Analysis I -- 5 Mathematical Analysis II. 330 $aThis book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms. 410 0$aSpringerBriefs in Optimization,$x2190-8354 606 $aMathematical optimization 606 $aNumerical analysis 606 $aMarkov processes 606 $aAlgorithms 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aMarkov model$3https://scigraph.springernature.com/ontologies/product-market-codes/M27010 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 615 0$aMathematical optimization. 615 0$aNumerical analysis. 615 0$aMarkov processes. 615 0$aAlgorithms. 615 14$aOptimization. 615 24$aNumerical Analysis. 615 24$aMarkov model. 615 24$aAlgorithms. 676 $a004.678015118 676 $a004.678 700 $aYang$b Xin-She$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781375 702 $aHe$b Xing-Shi$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910338246303321 996 $aMathematical Foundations of Nature-Inspired Algorithms$92507101 997 $aUNINA