Vai al contenuto principale della pagina

Machine Learning and Applications; Proceedings: International Conference on Machine Learning and Applications (6th: 2007: Cincinnati, Ohio)



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wani M. Arif Visualizza persona
Titolo: Machine Learning and Applications; Proceedings: International Conference on Machine Learning and Applications (6th: 2007: Cincinnati, Ohio) Visualizza cluster
Pubblicazione: [Place of publication not identified], : IEEE Computer Society Press, 2007
Descrizione fisica: 1 online resource
Disciplina: 006.31
Soggetto topico: Machine learning
Note generali: Bibliographic Level Mode of Issuance: Monograph
Sommario/riassunto: An optical character recognition (OCR) system with a high recognition rate is challenging to develop. One of the major contributors to OCR errors is smeared characters. Several factors lead to the smearing of characters such as bad scanning quality and a poor binarization technique. Typical approaches to character segmentation falls into three major categories: image-based, recognition-based, and holistic-based. Among these approaches, the segmentation path can be linear or non-linear. Our paper proposes a non-linear approach to segment characters on grayscale document images. Our method first determines whether characters are smeared together using general character features. The correct segmentation path is found using a shortest path approach. We achieved a segmentation accuracy of 95% over a set of about 2,000 smeared characters.
Titolo autorizzato: Machine Learning and Applications; Proceedings: International Conference on Machine Learning and Applications (6th: 2007: Cincinnati, Ohio)  Visualizza cluster
ISBN: 9781509089468
1509089462
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910145148603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui